天基涡旋日冕技术发展

E. Serabyn, D. Mawet
{"title":"天基涡旋日冕技术发展","authors":"E. Serabyn, D. Mawet","doi":"10.1109/AERO.2012.6187180","DOIUrl":null,"url":null,"abstract":"As demonstrated recently at the Palomar Observatory, the Optical Vortex Coronagraph (OVC) can enable high-contrast imaging observations very near bright stars. A small-angle observational capability is especially important because it can reduce the telescope diameter needed for close companion observations. However, as the OVC is a fairly new technique, the vortex phase masks needed to enable the very high contrast imaging required to detect terrestrial exoplanets (~ 10-10 relative to the host star) are not yet in hand. This paper thus first briefly describes the basic operation of the vortex coronagraph, and then turns to a discussion of a promising method of manufacturing the needed vortex masks. In particular, vortex phase masks based on circularly-symmetric half-wave plates made of liquid-crystal polymers have already achieved very good performance. The practical limitations of such masks, and the means of overcoming these limitations are also addressed. Successful development of the requisite vortex masks could potentially enable a range of high-contrast coronagraphic space missions, from an initial explorer class mission to a large flagship class exoplanet imaging mission.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"54 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Technology development for space based Vortex Coronagraphy\",\"authors\":\"E. Serabyn, D. Mawet\",\"doi\":\"10.1109/AERO.2012.6187180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As demonstrated recently at the Palomar Observatory, the Optical Vortex Coronagraph (OVC) can enable high-contrast imaging observations very near bright stars. A small-angle observational capability is especially important because it can reduce the telescope diameter needed for close companion observations. However, as the OVC is a fairly new technique, the vortex phase masks needed to enable the very high contrast imaging required to detect terrestrial exoplanets (~ 10-10 relative to the host star) are not yet in hand. This paper thus first briefly describes the basic operation of the vortex coronagraph, and then turns to a discussion of a promising method of manufacturing the needed vortex masks. In particular, vortex phase masks based on circularly-symmetric half-wave plates made of liquid-crystal polymers have already achieved very good performance. The practical limitations of such masks, and the means of overcoming these limitations are also addressed. Successful development of the requisite vortex masks could potentially enable a range of high-contrast coronagraphic space missions, from an initial explorer class mission to a large flagship class exoplanet imaging mission.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"54 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

正如最近在帕洛玛天文台所展示的那样,光学涡旋日冕仪(OVC)可以在非常接近明亮恒星的地方进行高对比度的成像观测。小角度观测能力尤其重要,因为它可以减少近距离伴星观测所需的望远镜直径。然而,由于OVC是一项相当新的技术,旋涡相位掩模需要实现探测类地系外行星所需的高对比度成像(相对于主星~ 10-10),目前还没有。因此,本文首先简要介绍了涡旋日冕仪的基本工作,然后讨论了制造所需涡旋掩模的一种有前途的方法。特别是基于液晶聚合物的圆对称半波片的涡相掩模已经取得了很好的性能。还讨论了这种口罩的实际局限性以及克服这些局限性的方法。成功开发必要的旋涡掩膜可能会使一系列高对比度日冕空间任务成为可能,从最初的探索者级任务到大型旗舰级系外行星成像任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technology development for space based Vortex Coronagraphy
As demonstrated recently at the Palomar Observatory, the Optical Vortex Coronagraph (OVC) can enable high-contrast imaging observations very near bright stars. A small-angle observational capability is especially important because it can reduce the telescope diameter needed for close companion observations. However, as the OVC is a fairly new technique, the vortex phase masks needed to enable the very high contrast imaging required to detect terrestrial exoplanets (~ 10-10 relative to the host star) are not yet in hand. This paper thus first briefly describes the basic operation of the vortex coronagraph, and then turns to a discussion of a promising method of manufacturing the needed vortex masks. In particular, vortex phase masks based on circularly-symmetric half-wave plates made of liquid-crystal polymers have already achieved very good performance. The practical limitations of such masks, and the means of overcoming these limitations are also addressed. Successful development of the requisite vortex masks could potentially enable a range of high-contrast coronagraphic space missions, from an initial explorer class mission to a large flagship class exoplanet imaging mission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信