车辆调度问题的全局-局部最优信息比粒子群算法研究

Zhuangkuo Li, Tingting Zhu
{"title":"车辆调度问题的全局-局部最优信息比粒子群算法研究","authors":"Zhuangkuo Li, Tingting Zhu","doi":"10.1109/IHMSC.2015.59","DOIUrl":null,"url":null,"abstract":"In order to reduce the standard particle swarm algorithm trapped in local optimal value, guarantee the convergence speed of the particle swarm optimization algorithm and improve the quality of the solution and robustness in the vehicle scheduling problem, based on the standard particle swarm optimization (PSO) algorithm, this paper proposes a new improved standard particle swarm algorithm namely global-local optimal information ratio PSO (GLIR-PSO), and the algorithm using the particle's global-local optimal information ratio weighs the particles of particle's global optimal and local optimal information and it is applied to the vehicle scheduling problem, the model of particle swarm optimization for vehicle scheduling problem is established, and compared with standard particle swarm optimization algorithm and the new particle swarm optimization algorithm with global-local best minimum. The results of simulation demonstrate that the algorithm shows a better performance in convergence speed, so it is an effective method for solving the vehicle scheduling problem.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"118 1","pages":"92-96"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Research on Global-Local Optimal Information Ratio Particle Swarm Optimization for Vehicle Scheduling Problem\",\"authors\":\"Zhuangkuo Li, Tingting Zhu\",\"doi\":\"10.1109/IHMSC.2015.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the standard particle swarm algorithm trapped in local optimal value, guarantee the convergence speed of the particle swarm optimization algorithm and improve the quality of the solution and robustness in the vehicle scheduling problem, based on the standard particle swarm optimization (PSO) algorithm, this paper proposes a new improved standard particle swarm algorithm namely global-local optimal information ratio PSO (GLIR-PSO), and the algorithm using the particle's global-local optimal information ratio weighs the particles of particle's global optimal and local optimal information and it is applied to the vehicle scheduling problem, the model of particle swarm optimization for vehicle scheduling problem is established, and compared with standard particle swarm optimization algorithm and the new particle swarm optimization algorithm with global-local best minimum. The results of simulation demonstrate that the algorithm shows a better performance in convergence speed, so it is an effective method for solving the vehicle scheduling problem.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"118 1\",\"pages\":\"92-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了减少标准粒子群算法受困于局部最优值,保证粒子群优化算法的收敛速度,提高车辆调度问题的求解质量和鲁棒性,本文在标准粒子群优化(PSO)算法的基础上,提出了一种新的改进标准粒子群算法——全局-局部最优信息比粒子群算法(GLIR-PSO)。利用粒子的全局-局部最优信息比对粒子的全局最优信息和局部最优信息进行加权,将该算法应用于车辆调度问题,建立了车辆调度问题的粒子群优化模型,并与标准粒子群优化算法和具有全局-局部最优最小值的新型粒子群优化算法进行了比较。仿真结果表明,该算法具有较好的收敛速度,是解决车辆调度问题的一种有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Global-Local Optimal Information Ratio Particle Swarm Optimization for Vehicle Scheduling Problem
In order to reduce the standard particle swarm algorithm trapped in local optimal value, guarantee the convergence speed of the particle swarm optimization algorithm and improve the quality of the solution and robustness in the vehicle scheduling problem, based on the standard particle swarm optimization (PSO) algorithm, this paper proposes a new improved standard particle swarm algorithm namely global-local optimal information ratio PSO (GLIR-PSO), and the algorithm using the particle's global-local optimal information ratio weighs the particles of particle's global optimal and local optimal information and it is applied to the vehicle scheduling problem, the model of particle swarm optimization for vehicle scheduling problem is established, and compared with standard particle swarm optimization algorithm and the new particle swarm optimization algorithm with global-local best minimum. The results of simulation demonstrate that the algorithm shows a better performance in convergence speed, so it is an effective method for solving the vehicle scheduling problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信