HANSO软件中光滑和非光滑优化求解器的比较评价

IF 2.2 Q1 MATHEMATICS, APPLIED
A. Tor
{"title":"HANSO软件中光滑和非光滑优化求解器的比较评价","authors":"A. Tor","doi":"10.11121/ijocta.2022.1027","DOIUrl":null,"url":null,"abstract":"The aim of this study is to compare the performance of smooth and nonsmooth optimization solvers from HANSO (Hybrid Algorithm for Nonsmooth Optimization) software. The smooth optimization solver is the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the nonsmooth optimization solver is the Hybrid Algorithm for Nonsmooth Optimization. More precisely, the nonsmooth optimization algorithm is the combination of the BFGS and the Gradient Sampling Algorithm (GSA). We use well-known collection of academic test problems for nonsmooth optimization containing both convex and nonconvex problems. The motivation for this research is the importance of the comparative assessment of smooth optimization methods for solving nonsmooth optimization problems. This assessment will demonstrate how successful is the BFGS method for solving nonsmooth optimization problems in comparison with the nonsmooth optimization solver from HANSO. Performance profiles using the number iterations, the number of function evaluations and the number of subgradient evaluations are used to compare solvers.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"50 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative assessment of smooth and non-smooth optimization solvers in HANSO software\",\"authors\":\"A. Tor\",\"doi\":\"10.11121/ijocta.2022.1027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to compare the performance of smooth and nonsmooth optimization solvers from HANSO (Hybrid Algorithm for Nonsmooth Optimization) software. The smooth optimization solver is the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the nonsmooth optimization solver is the Hybrid Algorithm for Nonsmooth Optimization. More precisely, the nonsmooth optimization algorithm is the combination of the BFGS and the Gradient Sampling Algorithm (GSA). We use well-known collection of academic test problems for nonsmooth optimization containing both convex and nonconvex problems. The motivation for this research is the importance of the comparative assessment of smooth optimization methods for solving nonsmooth optimization problems. This assessment will demonstrate how successful is the BFGS method for solving nonsmooth optimization problems in comparison with the nonsmooth optimization solver from HANSO. Performance profiles using the number iterations, the number of function evaluations and the number of subgradient evaluations are used to compare solvers.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2022.1027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2022.1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是比较来自HANSO(非光滑优化混合算法)软件的光滑和非光滑优化求解器的性能。平滑优化求解器是BFGS (Broyden-Fletcher-Goldfarb-Shanno)方法的实现,非光滑优化求解器是非光滑优化的混合算法。更准确地说,非光滑优化算法是BFGS和梯度采样算法(GSA)的结合。我们使用著名的学术测试问题集来解决包含凸和非凸问题的非光滑优化问题。本研究的动机是比较评价光滑优化方法对解决非光滑优化问题的重要性。与HANSO的非光滑优化求解器相比,该评估将证明BFGS方法在解决非光滑优化问题方面是多么成功。使用迭代次数、函数求值次数和次梯度求值次数的性能概要文件用于比较求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative assessment of smooth and non-smooth optimization solvers in HANSO software
The aim of this study is to compare the performance of smooth and nonsmooth optimization solvers from HANSO (Hybrid Algorithm for Nonsmooth Optimization) software. The smooth optimization solver is the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the nonsmooth optimization solver is the Hybrid Algorithm for Nonsmooth Optimization. More precisely, the nonsmooth optimization algorithm is the combination of the BFGS and the Gradient Sampling Algorithm (GSA). We use well-known collection of academic test problems for nonsmooth optimization containing both convex and nonconvex problems. The motivation for this research is the importance of the comparative assessment of smooth optimization methods for solving nonsmooth optimization problems. This assessment will demonstrate how successful is the BFGS method for solving nonsmooth optimization problems in comparison with the nonsmooth optimization solver from HANSO. Performance profiles using the number iterations, the number of function evaluations and the number of subgradient evaluations are used to compare solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信