Vargas-Hernández Marcela, Vázquez-Marrufo Gerardo, Aguilar-Ruiz Carlos Agustín, G. M. Antonio, Rocha Oscar, Cerna-Pantoja Diego, A. Cruz-Hernández
{"title":"与次生代谢物产生相关的microrna","authors":"Vargas-Hernández Marcela, Vázquez-Marrufo Gerardo, Aguilar-Ruiz Carlos Agustín, G. M. Antonio, Rocha Oscar, Cerna-Pantoja Diego, A. Cruz-Hernández","doi":"10.5772/INTECHOPEN.83804","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the regulation of the genetic expression in animals and plants by targeting mRNAs for cleavage or translational repression. Several miRNAs regulate the plant development, the metabolism, and the responses to biotic and abiotic stresses. Characterization of an miRNA has helped to show its role in fine tuning the mechanisms of posttranscriptional gene regulation. Although there is a lot of information related to miRNA regulation of some processes, the role of miRNA involved in the regulation of biosynthesis of secondary plant product is still poorly understood. In this chapter, we summarize the identification and characterization of miRNAs that participate in the regulation of the biosynthesis of secondary metabolites in plants and their use in the strategies to manipulate a controlled manipulation. miR156-targeted squamosa promoter binding protein-like (SPL) genes. High miR156 activity promotes accumulation of anthocyanins and activity-induced of flavonols. This study also demonstrates that SPL9 negatively regulates anthocyanin accumulation through properties in long-term subcultured Taxus cells.","PeriodicalId":20118,"journal":{"name":"Plant Physiological Aspects of Phenolic Compounds","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MicroRNAs Associated with Secondary Metabolites Production\",\"authors\":\"Vargas-Hernández Marcela, Vázquez-Marrufo Gerardo, Aguilar-Ruiz Carlos Agustín, G. M. Antonio, Rocha Oscar, Cerna-Pantoja Diego, A. Cruz-Hernández\",\"doi\":\"10.5772/INTECHOPEN.83804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the regulation of the genetic expression in animals and plants by targeting mRNAs for cleavage or translational repression. Several miRNAs regulate the plant development, the metabolism, and the responses to biotic and abiotic stresses. Characterization of an miRNA has helped to show its role in fine tuning the mechanisms of posttranscriptional gene regulation. Although there is a lot of information related to miRNA regulation of some processes, the role of miRNA involved in the regulation of biosynthesis of secondary plant product is still poorly understood. In this chapter, we summarize the identification and characterization of miRNAs that participate in the regulation of the biosynthesis of secondary metabolites in plants and their use in the strategies to manipulate a controlled manipulation. miR156-targeted squamosa promoter binding protein-like (SPL) genes. High miR156 activity promotes accumulation of anthocyanins and activity-induced of flavonols. This study also demonstrates that SPL9 negatively regulates anthocyanin accumulation through properties in long-term subcultured Taxus cells.\",\"PeriodicalId\":20118,\"journal\":{\"name\":\"Plant Physiological Aspects of Phenolic Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiological Aspects of Phenolic Compounds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.83804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiological Aspects of Phenolic Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MicroRNAs Associated with Secondary Metabolites Production
MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the regulation of the genetic expression in animals and plants by targeting mRNAs for cleavage or translational repression. Several miRNAs regulate the plant development, the metabolism, and the responses to biotic and abiotic stresses. Characterization of an miRNA has helped to show its role in fine tuning the mechanisms of posttranscriptional gene regulation. Although there is a lot of information related to miRNA regulation of some processes, the role of miRNA involved in the regulation of biosynthesis of secondary plant product is still poorly understood. In this chapter, we summarize the identification and characterization of miRNAs that participate in the regulation of the biosynthesis of secondary metabolites in plants and their use in the strategies to manipulate a controlled manipulation. miR156-targeted squamosa promoter binding protein-like (SPL) genes. High miR156 activity promotes accumulation of anthocyanins and activity-induced of flavonols. This study also demonstrates that SPL9 negatively regulates anthocyanin accumulation through properties in long-term subcultured Taxus cells.