半递归多元核回归估计的随机逼近方法

Q4 Mathematics
S. Slama, Y. Slaoui, H. Fathallah
{"title":"半递归多元核回归估计的随机逼近方法","authors":"S. Slama, Y. Slaoui, H. Fathallah","doi":"10.37863/tsp-7754833420-58","DOIUrl":null,"url":null,"abstract":"\nIn this research paper, we elaborate an extension of the semi-recursive kernel-type regression function estimator. We investigate the asymptotic properties of this estimator and compare them with non-recursive Nadaraya Watson regression estimator. From this perspective, we first calculate the bias and the variance of the proposed estimator which strongly depend on the choice of three parameters, namely the stepsizes (βn) and (γn) as well as the bandwidth (hn) chosen using one of the best methods of bandwidth selection, the bootstrap approach compared to the plug-in method. An appropriate choice of those parameters yields that, under some conditions, the MSE (Mean Squared Error) of the proposed estimator can be smaller than that of Nadaraya Watson's estimator. \n We corroborate our theoretical results through simulations studies and by considering two real dataset applications, the French Hospital Data of COVID-19 epidemic as well as the Plasmodium Falciparum Parasite Load (PL).\n","PeriodicalId":38143,"journal":{"name":"Theory of Stochastic Processes","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stochastic approximation method for semi-recursive multivariate kernel-type regression estimation\",\"authors\":\"S. Slama, Y. Slaoui, H. Fathallah\",\"doi\":\"10.37863/tsp-7754833420-58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIn this research paper, we elaborate an extension of the semi-recursive kernel-type regression function estimator. We investigate the asymptotic properties of this estimator and compare them with non-recursive Nadaraya Watson regression estimator. From this perspective, we first calculate the bias and the variance of the proposed estimator which strongly depend on the choice of three parameters, namely the stepsizes (βn) and (γn) as well as the bandwidth (hn) chosen using one of the best methods of bandwidth selection, the bootstrap approach compared to the plug-in method. An appropriate choice of those parameters yields that, under some conditions, the MSE (Mean Squared Error) of the proposed estimator can be smaller than that of Nadaraya Watson's estimator. \\n We corroborate our theoretical results through simulations studies and by considering two real dataset applications, the French Hospital Data of COVID-19 epidemic as well as the Plasmodium Falciparum Parasite Load (PL).\\n\",\"PeriodicalId\":38143,\"journal\":{\"name\":\"Theory of Stochastic Processes\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Stochastic Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/tsp-7754833420-58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/tsp-7754833420-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们阐述了半递归核回归函数估计的一个扩展。研究了该估计量的渐近性质,并与非递归Nadaraya Watson回归估计量进行了比较。从这个角度来看,我们首先计算了所提出的估计器的偏差和方差,它们强烈依赖于三个参数的选择,即步长(βn)和(γn)以及带宽(hn),使用带宽选择的最佳方法之一,与插件方法相比,bootstrap方法。适当选择这些参数,在某些条件下,所提出的估计量的MSE(均方误差)可以小于Nadaraya Watson的估计量。我们通过模拟研究和考虑两个真实数据集应用,即法国医院COVID-19流行数据和恶性疟原虫寄生虫负荷(PL),证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stochastic approximation method for semi-recursive multivariate kernel-type regression estimation
In this research paper, we elaborate an extension of the semi-recursive kernel-type regression function estimator. We investigate the asymptotic properties of this estimator and compare them with non-recursive Nadaraya Watson regression estimator. From this perspective, we first calculate the bias and the variance of the proposed estimator which strongly depend on the choice of three parameters, namely the stepsizes (βn) and (γn) as well as the bandwidth (hn) chosen using one of the best methods of bandwidth selection, the bootstrap approach compared to the plug-in method. An appropriate choice of those parameters yields that, under some conditions, the MSE (Mean Squared Error) of the proposed estimator can be smaller than that of Nadaraya Watson's estimator. We corroborate our theoretical results through simulations studies and by considering two real dataset applications, the French Hospital Data of COVID-19 epidemic as well as the Plasmodium Falciparum Parasite Load (PL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Stochastic Processes
Theory of Stochastic Processes Mathematics-Applied Mathematics
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信