{"title":"论洛伦兹球的约束流形","authors":"Buşra Aktaş, Olgun Durmaz, Halit Gündoğan","doi":"10.2478/auom-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract The expression of the structure equation of a mechanism is significant to present the last position of the mechanism. Moreover, in order to attain the constraint manifold of a chain, we need to constitute the structure equation. In this paper, we determine the structure equations and the constraint manifolds of a spherical open-chain in the Lorentz space. The structure equations of spherical open chain with reference to the causal character of the first link are obtained. Later, the constraint manifolds of the mechanism are determined by means of these equations. The geometric constructions corresponding to these manifolds are studied.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"1 1","pages":"15 - 34"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Constraint Manifolds of Lorentz Sphere\",\"authors\":\"Buşra Aktaş, Olgun Durmaz, Halit Gündoğan\",\"doi\":\"10.2478/auom-2020-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The expression of the structure equation of a mechanism is significant to present the last position of the mechanism. Moreover, in order to attain the constraint manifold of a chain, we need to constitute the structure equation. In this paper, we determine the structure equations and the constraint manifolds of a spherical open-chain in the Lorentz space. The structure equations of spherical open chain with reference to the causal character of the first link are obtained. Later, the constraint manifolds of the mechanism are determined by means of these equations. The geometric constructions corresponding to these manifolds are studied.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"1 1\",\"pages\":\"15 - 34\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract The expression of the structure equation of a mechanism is significant to present the last position of the mechanism. Moreover, in order to attain the constraint manifold of a chain, we need to constitute the structure equation. In this paper, we determine the structure equations and the constraint manifolds of a spherical open-chain in the Lorentz space. The structure equations of spherical open chain with reference to the causal character of the first link are obtained. Later, the constraint manifolds of the mechanism are determined by means of these equations. The geometric constructions corresponding to these manifolds are studied.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.