开发一种灵活的建模和求解多响应优化问题的方法

Q3 Mathematics
T. Hejazi, M. Moradpour
{"title":"开发一种灵活的建模和求解多响应优化问题的方法","authors":"T. Hejazi, M. Moradpour","doi":"10.1515/eqc-2018-0024","DOIUrl":null,"url":null,"abstract":"Abstract Simultaneous optimization of multiple quality characteristics (responses) of a product or process is required in many real-world problems. Multiresponse optimization (MRO) techniques tries to solve such problems; the ultimate objective of which is to adjust control factors that provides most desired values for the responses. Regression techniques are most commonly used methods to identify and estimate relationships between control variables and responses. Due to the industrial advances and hence the complexity of processes and systems, many relationships between input variables and quality characteristics have become much more complex. In such circumstances, classic regression techniques encounter difficulties to create a well-fitted model which can be easily optimized. The alternative approach proposed in this study is a regression tree method called CART, which is a data mining method. Since the output of CART consists of several if-then terms, NSGA-II algorithm was considered to solve the model and achieve the optimal solutions. Finally, we evaluate performance of the proposed method with a real data set about modeling and improvement of automotive engines.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"24 1","pages":"103 - 113"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Flexible Methodology for Modeling and Solving Multiple Response Optimization Problems\",\"authors\":\"T. Hejazi, M. Moradpour\",\"doi\":\"10.1515/eqc-2018-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Simultaneous optimization of multiple quality characteristics (responses) of a product or process is required in many real-world problems. Multiresponse optimization (MRO) techniques tries to solve such problems; the ultimate objective of which is to adjust control factors that provides most desired values for the responses. Regression techniques are most commonly used methods to identify and estimate relationships between control variables and responses. Due to the industrial advances and hence the complexity of processes and systems, many relationships between input variables and quality characteristics have become much more complex. In such circumstances, classic regression techniques encounter difficulties to create a well-fitted model which can be easily optimized. The alternative approach proposed in this study is a regression tree method called CART, which is a data mining method. Since the output of CART consists of several if-then terms, NSGA-II algorithm was considered to solve the model and achieve the optimal solutions. Finally, we evaluate performance of the proposed method with a real data set about modeling and improvement of automotive engines.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"24 1\",\"pages\":\"103 - 113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2018-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2018-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在许多现实问题中,需要同时优化产品或过程的多个质量特征(响应)。多响应优化(MRO)技术试图解决这类问题;其最终目标是调整控制因素,为响应提供最理想的值。回归技术是识别和估计控制变量与响应之间关系的最常用方法。由于工业的进步以及过程和系统的复杂性,输入变量和质量特征之间的许多关系变得更加复杂。在这种情况下,经典的回归技术很难创建一个可以轻松优化的良好拟合模型。本研究提出的替代方法是一种称为CART的回归树方法,这是一种数据挖掘方法。由于CART的输出包含多个if-then项,因此采用NSGA-II算法求解模型并获得最优解。最后,我们用汽车发动机建模和改进的真实数据集来评估所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a Flexible Methodology for Modeling and Solving Multiple Response Optimization Problems
Abstract Simultaneous optimization of multiple quality characteristics (responses) of a product or process is required in many real-world problems. Multiresponse optimization (MRO) techniques tries to solve such problems; the ultimate objective of which is to adjust control factors that provides most desired values for the responses. Regression techniques are most commonly used methods to identify and estimate relationships between control variables and responses. Due to the industrial advances and hence the complexity of processes and systems, many relationships between input variables and quality characteristics have become much more complex. In such circumstances, classic regression techniques encounter difficulties to create a well-fitted model which can be easily optimized. The alternative approach proposed in this study is a regression tree method called CART, which is a data mining method. Since the output of CART consists of several if-then terms, NSGA-II algorithm was considered to solve the model and achieve the optimal solutions. Finally, we evaluate performance of the proposed method with a real data set about modeling and improvement of automotive engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信