{"title":"EFX存在三个代理","authors":"B. Chaudhury, J. Garg, Kurt Mehlhorn","doi":"10.1145/3616009","DOIUrl":null,"url":null,"abstract":"We study the problem of distributing a set of indivisible goods among agents with additive valuations in a fair manner. The fairness notion under consideration is envy-freeness up to any good (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. [9] by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"40 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFX Exists for Three Agents\",\"authors\":\"B. Chaudhury, J. Garg, Kurt Mehlhorn\",\"doi\":\"10.1145/3616009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of distributing a set of indivisible goods among agents with additive valuations in a fair manner. The fairness notion under consideration is envy-freeness up to any good (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. [9] by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation.\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3616009\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3616009","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
We study the problem of distributing a set of indivisible goods among agents with additive valuations in a fair manner. The fairness notion under consideration is envy-freeness up to any good (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. [9] by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining