{"title":"当前的homlie代数","authors":"Torkia Ben Jmaa, A. Makhlouf, N. Saadaoui","doi":"10.12697/acutm.2022.26.08","DOIUrl":null,"url":null,"abstract":"In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations, and centroids are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"50 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Current Hom-Lie algebras\",\"authors\":\"Torkia Ben Jmaa, A. Makhlouf, N. Saadaoui\",\"doi\":\"10.12697/acutm.2022.26.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations, and centroids are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2022.26.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations, and centroids are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.