当前的homlie代数

IF 0.3 Q4 MATHEMATICS
Torkia Ben Jmaa, A. Makhlouf, N. Saadaoui
{"title":"当前的homlie代数","authors":"Torkia Ben Jmaa, A. Makhlouf, N. Saadaoui","doi":"10.12697/acutm.2022.26.08","DOIUrl":null,"url":null,"abstract":"In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations, and centroids are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"50 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Current Hom-Lie algebras\",\"authors\":\"Torkia Ben Jmaa, A. Makhlouf, N. Saadaoui\",\"doi\":\"10.12697/acutm.2022.26.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations, and centroids are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2022.26.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了张量积上的homlie结构。特别地,我们考虑了当前的homlie代数并讨论了它们的表示。我们确定了当前海森堡homlie代数最小维数的忠实表示。此外,还研究了导数,包括广义导数和质心。此外,还讨论了现有homlie代数的上同调和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current Hom-Lie algebras
In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations, and centroids are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信