特征态期望值随系统大小的收敛性

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yichen Huang
{"title":"特征态期望值随系统大小的收敛性","authors":"Yichen Huang","doi":"10.4310/ATMP.2022.v26.n6.a5","DOIUrl":null,"url":null,"abstract":"Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence of eigenstate expectation values with system size\",\"authors\":\"Yichen Huang\",\"doi\":\"10.4310/ATMP.2022.v26.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/ATMP.2022.v26.n6.a5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2022.v26.n6.a5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

理解物理量在热力学极限下的渐近行为是统计力学中的一个基本问题。本文研究了局部算子的特征态期望值随系统大小的发散收敛到能量密度光滑函数的速度。在任意空间维度的平移不变系统中,我们证明了对于除测度零外的所有局部算子集,有限大小的特征态期望值与上述光滑函数的偏差下界为$1/O(N)$,其中$N$为系统大小。无论模型的可积性还是混沌性,下界都成立,并且在满足本征态热化假设的系统中是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of eigenstate expectation values with system size
Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信