基于量子态分解的新型量子行走

Chusei Kiumi
{"title":"基于量子态分解的新型量子行走","authors":"Chusei Kiumi","doi":"10.26421/QIC21.7-8-1","DOIUrl":null,"url":null,"abstract":"In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"50 1","pages":"541-556"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new type of quantum walks based on decomposing quantum states\",\"authors\":\"Chusei Kiumi\",\"doi\":\"10.26421/QIC21.7-8-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"50 1\",\"pages\":\"541-556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.7-8-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.7-8-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文引入了直线上的二态分解型量子行走(DQW),作为二态量子行走(QW)的扩展。DQW的时间演化用两个不同的矩阵来定义,一个矩阵被赋给量子态的实分量,另一个矩阵被赋给量子态的虚分量。与普通的二态量子阱不同,dqw的局域化和扩散现象可以同时发生。此外,DQW总是可以用相同的概率度量转换为相应的四态QW。换句话说,一类四态qw可以由具有两态的dqw来实现。在这项工作中,我们揭示了与4状态Grover行走相对应的2状态DQW。在此基础上,导出了四态qw对应的一类dqw的弱极限定理,这类dqw可以看作是广义的Grover游走。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new type of quantum walks based on decomposing quantum states
In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信