{"title":"基于量子态分解的新型量子行走","authors":"Chusei Kiumi","doi":"10.26421/QIC21.7-8-1","DOIUrl":null,"url":null,"abstract":"In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"50 1","pages":"541-556"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new type of quantum walks based on decomposing quantum states\",\"authors\":\"Chusei Kiumi\",\"doi\":\"10.26421/QIC21.7-8-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"50 1\",\"pages\":\"541-556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.7-8-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.7-8-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new type of quantum walks based on decomposing quantum states
In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.