{"title":"虚等变Grothendieck-Riemann-Roch公式","authors":"Charanya Ravi, Bhamidi Sreedhar","doi":"10.4171/dm/864","DOIUrl":null,"url":null,"abstract":"For a $G$-scheme $X$ with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of Fantechi-Gottsche to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over $\\mathbb{C}$ with proper actions.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"68 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Virtual equivariant Grothendieck-Riemann-Roch formula\",\"authors\":\"Charanya Ravi, Bhamidi Sreedhar\",\"doi\":\"10.4171/dm/864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a $G$-scheme $X$ with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of Fantechi-Gottsche to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over $\\\\mathbb{C}$ with proper actions.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/864\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/864","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Virtual equivariant Grothendieck-Riemann-Roch formula
For a $G$-scheme $X$ with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of Fantechi-Gottsche to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over $\mathbb{C}$ with proper actions.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.