A. del Arco, F. Guerrero, F. Jiménez-Gómez, G. Parra
{"title":"浮游生物群落对环境相关农药混合物的响应","authors":"A. del Arco, F. Guerrero, F. Jiménez-Gómez, G. Parra","doi":"10.1051/LIMN/2019004","DOIUrl":null,"url":null,"abstract":"Chemicals do not occur alone in the environment but most ecotoxicological assessments target the effect of single chemicals on aquatic communities and the establishment of legal limits is based on them. The present study assesses how plankton communities respond to single and mixture treatments of copper sulphate and ammonium nitrate where both agrochemical concentrations are below legal limits. Twenty-five microcosms were used to assess the effects of four treatments (n = 5): (1) low nitrate (L) of 25 mg L−1; (2) high nitrate (H) of 50 mg L−1; (3) copper treatment (CU) of 0.04 mg L−1 of copper; and (4) interaction treatment (I) of 50 mg L−1 of nitrate applied together with 0.04 mg L−1 of copper, and the controls (C). Plankton abundance, phytoplankton biovolume and zooplankton community structure (changes in the diversity and richness) were used as structural endpoints, and oxygen production and litter decomposition as functional indicators. Overall, results show no effect on the plankton community exposed to agrochemical under legal limits in single neither in mixture treatments. Only by the end of the experiment, total zooplankton abundance shows differences between interaction treatment (I) and the rest of the treatments and controls. Concretely, the interaction treatment suggests how a nutrient enhancement from ammonium nitrate addition may counterbalance the toxic effect of copper sulphate on zooplankton, most likely as a result of higher phytoplankton availability that positively influences zooplankter survival. Both drastic and subtle effects on communities are relevant for disentangling how chemicals interact under European current legal limits.","PeriodicalId":7903,"journal":{"name":"Annales De Limnologie-international Journal of Limnology","volume":"40 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plankton community responses to environmentally-relevant agrochemical mixtures\",\"authors\":\"A. del Arco, F. Guerrero, F. Jiménez-Gómez, G. Parra\",\"doi\":\"10.1051/LIMN/2019004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemicals do not occur alone in the environment but most ecotoxicological assessments target the effect of single chemicals on aquatic communities and the establishment of legal limits is based on them. The present study assesses how plankton communities respond to single and mixture treatments of copper sulphate and ammonium nitrate where both agrochemical concentrations are below legal limits. Twenty-five microcosms were used to assess the effects of four treatments (n = 5): (1) low nitrate (L) of 25 mg L−1; (2) high nitrate (H) of 50 mg L−1; (3) copper treatment (CU) of 0.04 mg L−1 of copper; and (4) interaction treatment (I) of 50 mg L−1 of nitrate applied together with 0.04 mg L−1 of copper, and the controls (C). Plankton abundance, phytoplankton biovolume and zooplankton community structure (changes in the diversity and richness) were used as structural endpoints, and oxygen production and litter decomposition as functional indicators. Overall, results show no effect on the plankton community exposed to agrochemical under legal limits in single neither in mixture treatments. Only by the end of the experiment, total zooplankton abundance shows differences between interaction treatment (I) and the rest of the treatments and controls. Concretely, the interaction treatment suggests how a nutrient enhancement from ammonium nitrate addition may counterbalance the toxic effect of copper sulphate on zooplankton, most likely as a result of higher phytoplankton availability that positively influences zooplankter survival. Both drastic and subtle effects on communities are relevant for disentangling how chemicals interact under European current legal limits.\",\"PeriodicalId\":7903,\"journal\":{\"name\":\"Annales De Limnologie-international Journal of Limnology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Limnologie-international Journal of Limnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1051/LIMN/2019004\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Limnologie-international Journal of Limnology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/LIMN/2019004","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Plankton community responses to environmentally-relevant agrochemical mixtures
Chemicals do not occur alone in the environment but most ecotoxicological assessments target the effect of single chemicals on aquatic communities and the establishment of legal limits is based on them. The present study assesses how plankton communities respond to single and mixture treatments of copper sulphate and ammonium nitrate where both agrochemical concentrations are below legal limits. Twenty-five microcosms were used to assess the effects of four treatments (n = 5): (1) low nitrate (L) of 25 mg L−1; (2) high nitrate (H) of 50 mg L−1; (3) copper treatment (CU) of 0.04 mg L−1 of copper; and (4) interaction treatment (I) of 50 mg L−1 of nitrate applied together with 0.04 mg L−1 of copper, and the controls (C). Plankton abundance, phytoplankton biovolume and zooplankton community structure (changes in the diversity and richness) were used as structural endpoints, and oxygen production and litter decomposition as functional indicators. Overall, results show no effect on the plankton community exposed to agrochemical under legal limits in single neither in mixture treatments. Only by the end of the experiment, total zooplankton abundance shows differences between interaction treatment (I) and the rest of the treatments and controls. Concretely, the interaction treatment suggests how a nutrient enhancement from ammonium nitrate addition may counterbalance the toxic effect of copper sulphate on zooplankton, most likely as a result of higher phytoplankton availability that positively influences zooplankter survival. Both drastic and subtle effects on communities are relevant for disentangling how chemicals interact under European current legal limits.
期刊介绍:
Annales de Limnologie - International Journal of Limnology publishes papers on the ecology of freshwater systems, ranging from studies of aquatic organisms, physical and chemical works which relate to the biological environment, to ecological applications and frameworks for water management directives.
Main topics: Ecology of freshwater systems ; biodiversity, taxonomy, distribution patterns in space and time, biology of animals and plants ; experimental and conceptual studies which integrate laboratory and/or field work on physiology, population dynamics, biogeochemistry and nutrient dynamics, management, mathematical modelling ; techniques for sampling and chemical analyses, ecological applications, procedures which provide frameworks for environmental legislation.