限定采样的Sobolev函数的恢复

David Krieg, E. Novak, Mathias Sonnleitner
{"title":"限定采样的Sobolev函数的恢复","authors":"David Krieg, E. Novak, Mathias Sonnleitner","doi":"10.1090/mcom/3763","DOIUrl":null,"url":null,"abstract":"We study Lq-approximation and integration for functions from the Sobolev space W s p (Ω) and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when p = q = ∞, where a logarithmic loss cannot be avoided.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"10 5 1","pages":"2715-2738"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recovery of Sobolev functions restricted to iid sampling\",\"authors\":\"David Krieg, E. Novak, Mathias Sonnleitner\",\"doi\":\"10.1090/mcom/3763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Lq-approximation and integration for functions from the Sobolev space W s p (Ω) and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when p = q = ∞, where a logarithmic loss cannot be avoided.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"10 5 1\",\"pages\":\"2715-2738\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了Sobolev空间W sp函数的lq逼近和积分(Ω),并比较了最优随机(Monte Carlo)算法与只能使用均匀分布在域上的iid样本点的算法。主要结果是,如果我们限制iid采样,我们可以获得相同的最优收敛速度,这是学习和不确定性量化中的一个常见假设。唯一的例外是当p = q =∞时,无法避免对数损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovery of Sobolev functions restricted to iid sampling
We study Lq-approximation and integration for functions from the Sobolev space W s p (Ω) and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when p = q = ∞, where a logarithmic loss cannot be avoided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信