B. Bernadi, I. Mohamed, Ahmed Mohamed Al Bairaq, M. A. Hosani, A. Abdullayev, Allen Roopal
{"title":"利用先进的凝析油跟踪、注气和钻井策略,在下一代商业数值模拟器中开发和最大化阿布扎比大型陆上气田凝析油采收率的综合研究","authors":"B. Bernadi, I. Mohamed, Ahmed Mohamed Al Bairaq, M. A. Hosani, A. Abdullayev, Allen Roopal","doi":"10.2118/207765-ms","DOIUrl":null,"url":null,"abstract":"\n A comprehensive study of a giant onshore Abu Dhabi gas field using a next-generation commercial numerical simulator has been conducted. The objective was to identify the distribution and track the movement of the gas condensate in the reservoir, and to develop strategies to minimize the condensate drop-out and improve condensate recovery from the field.\n The field contains a large gas cap and an oil rim. We have identified the distribution of the gas condensate throughout the reservoir and were able to track its movement using the advanced fluid tracking option in the simulator. Once the gas condensate drop-out regions in the reservoir are identified, sensitivity runs with localized changes are carried out to improve the recovery from the reservoir. The strategies to mitigate drop-out include adding infill wells, drilling multi-lateral wells, reinjecting CO2 and dry gas into the reservoir, and hydraulic fracturing near the well bore.\n We were able to track the distribution of the condensate throughout the reservoir and identified key condensate drop-out regions. Adding infill wells improved the recovery of the condensate. Implementing multi-lateral wells also showed improved condensate recovery in the field. Hydraulic fracturing near the wellbore reduced condensate banking near the wellbore. Injecting dry gas improved the condensate recovery by a re-vaporization process where the liquid condensate is absorbed by dry gas.\n This paper discusses a comprehensive study on tracking the condensate distribution in a giant onshore field using a commercial simulator. The authors have performed a thorough investigation to identify an optimal condensate recovery strategy for the field, by comparing various recovery strategies using the full field reservoir simulation model.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive Study Developing and Maximizing the Recovery of Gas Condensate from a Giant Onshore Abu Dhabi Gas Field Utilizing Advanced Condensate Tracking, Gas Injection and Drilling Strategies in Next-generation Commercial Numerical Simulator\",\"authors\":\"B. Bernadi, I. Mohamed, Ahmed Mohamed Al Bairaq, M. A. Hosani, A. Abdullayev, Allen Roopal\",\"doi\":\"10.2118/207765-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A comprehensive study of a giant onshore Abu Dhabi gas field using a next-generation commercial numerical simulator has been conducted. The objective was to identify the distribution and track the movement of the gas condensate in the reservoir, and to develop strategies to minimize the condensate drop-out and improve condensate recovery from the field.\\n The field contains a large gas cap and an oil rim. We have identified the distribution of the gas condensate throughout the reservoir and were able to track its movement using the advanced fluid tracking option in the simulator. Once the gas condensate drop-out regions in the reservoir are identified, sensitivity runs with localized changes are carried out to improve the recovery from the reservoir. The strategies to mitigate drop-out include adding infill wells, drilling multi-lateral wells, reinjecting CO2 and dry gas into the reservoir, and hydraulic fracturing near the well bore.\\n We were able to track the distribution of the condensate throughout the reservoir and identified key condensate drop-out regions. Adding infill wells improved the recovery of the condensate. Implementing multi-lateral wells also showed improved condensate recovery in the field. Hydraulic fracturing near the wellbore reduced condensate banking near the wellbore. Injecting dry gas improved the condensate recovery by a re-vaporization process where the liquid condensate is absorbed by dry gas.\\n This paper discusses a comprehensive study on tracking the condensate distribution in a giant onshore field using a commercial simulator. The authors have performed a thorough investigation to identify an optimal condensate recovery strategy for the field, by comparing various recovery strategies using the full field reservoir simulation model.\",\"PeriodicalId\":10967,\"journal\":{\"name\":\"Day 1 Mon, November 15, 2021\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 15, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207765-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207765-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comprehensive Study Developing and Maximizing the Recovery of Gas Condensate from a Giant Onshore Abu Dhabi Gas Field Utilizing Advanced Condensate Tracking, Gas Injection and Drilling Strategies in Next-generation Commercial Numerical Simulator
A comprehensive study of a giant onshore Abu Dhabi gas field using a next-generation commercial numerical simulator has been conducted. The objective was to identify the distribution and track the movement of the gas condensate in the reservoir, and to develop strategies to minimize the condensate drop-out and improve condensate recovery from the field.
The field contains a large gas cap and an oil rim. We have identified the distribution of the gas condensate throughout the reservoir and were able to track its movement using the advanced fluid tracking option in the simulator. Once the gas condensate drop-out regions in the reservoir are identified, sensitivity runs with localized changes are carried out to improve the recovery from the reservoir. The strategies to mitigate drop-out include adding infill wells, drilling multi-lateral wells, reinjecting CO2 and dry gas into the reservoir, and hydraulic fracturing near the well bore.
We were able to track the distribution of the condensate throughout the reservoir and identified key condensate drop-out regions. Adding infill wells improved the recovery of the condensate. Implementing multi-lateral wells also showed improved condensate recovery in the field. Hydraulic fracturing near the wellbore reduced condensate banking near the wellbore. Injecting dry gas improved the condensate recovery by a re-vaporization process where the liquid condensate is absorbed by dry gas.
This paper discusses a comprehensive study on tracking the condensate distribution in a giant onshore field using a commercial simulator. The authors have performed a thorough investigation to identify an optimal condensate recovery strategy for the field, by comparing various recovery strategies using the full field reservoir simulation model.