集体行动,权力意味着轨道大小和音乐尺度

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
J. Elliott
{"title":"集体行动,权力意味着轨道大小和音乐尺度","authors":"J. Elliott","doi":"10.1080/17459737.2020.1836686","DOIUrl":null,"url":null,"abstract":"We provide an application of the theory of group actions to the study of musical scales. For any group G, finite G-set S, and real number t, we define the t-power diameter to be the size of any maximal orbit of S divided by the t-power mean orbit size of the elements of S. The symmetric group acts on the set of all tonic scales, where a tonic scale is a subset of containing 0. We show that for all , among all the subgroups G of , the t-power diameter of the G-set of all heptatonic scales is the largest for the subgroup Γ, and its conjugate subgroups, generated by . The unique maximal Γ-orbit consists of the 32 thāts of Hindustani classical music popularized by Bhatkhande. This analysis provides a reason why these 32 scales, among all 462 heptatonic scales, are of mathematical interest. We also apply our analysis, to a lesser degree, to hexatonic and pentatonic scales.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"47 1","pages":"97 - 120"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Group actions, power mean orbit size, and musical scales\",\"authors\":\"J. Elliott\",\"doi\":\"10.1080/17459737.2020.1836686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an application of the theory of group actions to the study of musical scales. For any group G, finite G-set S, and real number t, we define the t-power diameter to be the size of any maximal orbit of S divided by the t-power mean orbit size of the elements of S. The symmetric group acts on the set of all tonic scales, where a tonic scale is a subset of containing 0. We show that for all , among all the subgroups G of , the t-power diameter of the G-set of all heptatonic scales is the largest for the subgroup Γ, and its conjugate subgroups, generated by . The unique maximal Γ-orbit consists of the 32 thāts of Hindustani classical music popularized by Bhatkhande. This analysis provides a reason why these 32 scales, among all 462 heptatonic scales, are of mathematical interest. We also apply our analysis, to a lesser degree, to hexatonic and pentatonic scales.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":\"47 1\",\"pages\":\"97 - 120\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2020.1836686\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1836686","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

我们提供了群体行为理论在音阶研究中的应用。对于任意群G,有限G集S和实数t,我们定义t幂直径为S的任意最大轨道的大小除以S元素的t幂平均轨道的大小。对称群作用于所有主尺度的集合,其中主尺度是包含0的子集。我们证明了在所有的子群G中,所有七次方尺度的G集的t幂直径对于子群Γ及其共轭子群是最大的。独特的最大值Γ-orbit由Bhatkhande推广的印度斯坦古典音乐的32 thāts组成。这个分析提供了为什么在所有462个七阶音阶中这32个音阶具有数学意义的原因。我们也将我们的分析,在较小程度上,应用于六声音阶和五声音阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group actions, power mean orbit size, and musical scales
We provide an application of the theory of group actions to the study of musical scales. For any group G, finite G-set S, and real number t, we define the t-power diameter to be the size of any maximal orbit of S divided by the t-power mean orbit size of the elements of S. The symmetric group acts on the set of all tonic scales, where a tonic scale is a subset of containing 0. We show that for all , among all the subgroups G of , the t-power diameter of the G-set of all heptatonic scales is the largest for the subgroup Γ, and its conjugate subgroups, generated by . The unique maximal Γ-orbit consists of the 32 thāts of Hindustani classical music popularized by Bhatkhande. This analysis provides a reason why these 32 scales, among all 462 heptatonic scales, are of mathematical interest. We also apply our analysis, to a lesser degree, to hexatonic and pentatonic scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信