基于多米诺骨牌表的B型舒尔阳性观点

IF 0.4 Q4 MATHEMATICS, APPLIED
A. R. Mayorova, E. Vassilieva
{"title":"基于多米诺骨牌表的B型舒尔阳性观点","authors":"A. R. Mayorova, E. Vassilieva","doi":"10.4310/joc.2022.v13.n4.a3","DOIUrl":null,"url":null,"abstract":"Over the past years, major attention has been drawn to the question of identifying Schur-positive sets, i.e. sets of permutations whose associated quasisymmetric function is symmetric and can be written as a non-negative sum of Schur symmetric functions. The set of arc permutations, i.e. the set of permutations $\\pi$ in $S_n$ such that for any $1\\leq j \\leq n$, $\\{\\pi(1),\\pi(2),\\dots,\\pi(j)\\}$ is an interval in $\\mathbb{Z}_n$ is one of the most noticeable examples. This paper introduces a new type B extension of Schur-positivity to signed permutations based on Chow's quasisymmetric functions and generating functions for domino tableaux. As an important characteristic, our development is compatible with the works of Solomon regarding the descent algebra of Coxeter groups. In particular, we design descent preserving bijections between signed arc permutations and sets of domino tableaux to show that they are indeed type B Schur-positive.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"132 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A domino tableau-based view on type B Schur-positivity\",\"authors\":\"A. R. Mayorova, E. Vassilieva\",\"doi\":\"10.4310/joc.2022.v13.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past years, major attention has been drawn to the question of identifying Schur-positive sets, i.e. sets of permutations whose associated quasisymmetric function is symmetric and can be written as a non-negative sum of Schur symmetric functions. The set of arc permutations, i.e. the set of permutations $\\\\pi$ in $S_n$ such that for any $1\\\\leq j \\\\leq n$, $\\\\{\\\\pi(1),\\\\pi(2),\\\\dots,\\\\pi(j)\\\\}$ is an interval in $\\\\mathbb{Z}_n$ is one of the most noticeable examples. This paper introduces a new type B extension of Schur-positivity to signed permutations based on Chow's quasisymmetric functions and generating functions for domino tableaux. As an important characteristic, our development is compatible with the works of Solomon regarding the descent algebra of Coxeter groups. In particular, we design descent preserving bijections between signed arc permutations and sets of domino tableaux to show that they are indeed type B Schur-positive.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2022.v13.n4.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n4.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

在过去的几年里,人们主要关注的是确定Schur正集的问题,即其相关的准对称函数是对称的,可以写成Schur对称函数的非负和的置换集。弧排列集,即$S_n$中的排列集$\pi$,对于任何$1\leq j \leq n$, $\{\pi(1),\pi(2),\dots,\pi(j)\}$都是$\mathbb{Z}_n$中的一个区间,这是最值得注意的例子之一。基于Chow的拟对称函数和多米诺表的生成函数,给出了schur -正性对符号置换的一种新的B型扩展。作为一个重要的特征,我们的发展与所罗门关于Coxeter群的下降代数的著作是相容的。特别是,我们设计了符号弧排列和多米诺骨牌表集之间的下降保持双射,以表明它们确实是B型舒尔阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A domino tableau-based view on type B Schur-positivity
Over the past years, major attention has been drawn to the question of identifying Schur-positive sets, i.e. sets of permutations whose associated quasisymmetric function is symmetric and can be written as a non-negative sum of Schur symmetric functions. The set of arc permutations, i.e. the set of permutations $\pi$ in $S_n$ such that for any $1\leq j \leq n$, $\{\pi(1),\pi(2),\dots,\pi(j)\}$ is an interval in $\mathbb{Z}_n$ is one of the most noticeable examples. This paper introduces a new type B extension of Schur-positivity to signed permutations based on Chow's quasisymmetric functions and generating functions for domino tableaux. As an important characteristic, our development is compatible with the works of Solomon regarding the descent algebra of Coxeter groups. In particular, we design descent preserving bijections between signed arc permutations and sets of domino tableaux to show that they are indeed type B Schur-positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信