利用ERT和GPR识别埃及新行政首都建筑的结构危害

IF 0.3 4区 哲学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Adel D. M. Kotb, A. Basheer, A. Nasser, Mohamed Ramah
{"title":"利用ERT和GPR识别埃及新行政首都建筑的结构危害","authors":"Adel D. M. Kotb, A. Basheer, A. Nasser, Mohamed Ramah","doi":"10.11648/J.EARTH.20211005.15","DOIUrl":null,"url":null,"abstract":"The new administrative capital (NAC), as decided by the Egyptian government's proposed planning, is placed 45 kilometers east of Cairo. According to Egyptian government strategies, this city will be the country's future governmental and economic hub. Ministries, crucial government agencies, and sectors are all expected to be represented on the site. The future capital's total land area is around 700 square kilometers. It is projected that there are five million people living there, this population could rise to seven million people. The skyscrapers sector in the New Administrative Capital is the subject of the research. To detect near-surface structures at the chosen building site, nine Electrical Resistivity Tomography (ERT) profiles and twenty-four Ground Penetrating Radar (GPR) profiles were used in this study. After the necessary and appropriate processing, the results that extrapolated from all measured profiles of both tools, demonstrated that the research region can be separated into two different shallow layers. The (Higher Miocene) sandy limestone rock makes up the main first surface layer with thickness about 4 meters. The second layer consists of silty shale rock with thickness about 12 meters in some places. This The most obvious features that had an impact on building were normal faults in the WNW and ENE directions, with minor fractures between them, as well as a few shale lenses can reach diameters of 3 to 4 meters. Additionally, the retrieved findings from the two geophysical tools demonstrate that the shape and thickness of the inferred layers are in satisfactory correlation.","PeriodicalId":50560,"journal":{"name":"Earth Sciences History","volume":"9 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing ERT and GPR to Distinguish Structures Maleficence the Constructions in the New Administrative Capital, Egypt\",\"authors\":\"Adel D. M. Kotb, A. Basheer, A. Nasser, Mohamed Ramah\",\"doi\":\"10.11648/J.EARTH.20211005.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new administrative capital (NAC), as decided by the Egyptian government's proposed planning, is placed 45 kilometers east of Cairo. According to Egyptian government strategies, this city will be the country's future governmental and economic hub. Ministries, crucial government agencies, and sectors are all expected to be represented on the site. The future capital's total land area is around 700 square kilometers. It is projected that there are five million people living there, this population could rise to seven million people. The skyscrapers sector in the New Administrative Capital is the subject of the research. To detect near-surface structures at the chosen building site, nine Electrical Resistivity Tomography (ERT) profiles and twenty-four Ground Penetrating Radar (GPR) profiles were used in this study. After the necessary and appropriate processing, the results that extrapolated from all measured profiles of both tools, demonstrated that the research region can be separated into two different shallow layers. The (Higher Miocene) sandy limestone rock makes up the main first surface layer with thickness about 4 meters. The second layer consists of silty shale rock with thickness about 12 meters in some places. This The most obvious features that had an impact on building were normal faults in the WNW and ENE directions, with minor fractures between them, as well as a few shale lenses can reach diameters of 3 to 4 meters. Additionally, the retrieved findings from the two geophysical tools demonstrate that the shape and thickness of the inferred layers are in satisfactory correlation.\",\"PeriodicalId\":50560,\"journal\":{\"name\":\"Earth Sciences History\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences History\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EARTH.20211005.15\",\"RegionNum\":4,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences History","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.11648/J.EARTH.20211005.15","RegionNum":4,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据埃及政府提出的规划,新行政首都(NAC)位于开罗以东45公里处。根据埃及政府的战略,这座城市将成为该国未来的政府和经济中心。各部委、重要的政府机构和部门都将出席会议。未来首都的土地总面积约为700平方公里。据估计,目前有500万人居住在那里,这一人口可能会增加到700万人。此次调查的对象是新行政首都的摩天大楼。为了探测选定建筑场地的近地表结构,本研究使用了9条电阻率层析成像(ERT)剖面和24条探地雷达(GPR)剖面。经过必要和适当的处理,从两种工具的所有测量剖面推断的结果表明,研究区域可以分为两个不同的浅层。第一表层主要为砂质灰岩(上中新世),厚度约4米。第二层由粉质页岩组成,在某些地方厚度约为12米。对造城影响最明显的特征是WNW和ENE方向的正断层,正断层之间有较小的裂缝,以及少数直径可达3 ~ 4米的页岩透镜体。此外,两种地球物理工具的检索结果表明,推断层的形状和厚度具有令人满意的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing ERT and GPR to Distinguish Structures Maleficence the Constructions in the New Administrative Capital, Egypt
The new administrative capital (NAC), as decided by the Egyptian government's proposed planning, is placed 45 kilometers east of Cairo. According to Egyptian government strategies, this city will be the country's future governmental and economic hub. Ministries, crucial government agencies, and sectors are all expected to be represented on the site. The future capital's total land area is around 700 square kilometers. It is projected that there are five million people living there, this population could rise to seven million people. The skyscrapers sector in the New Administrative Capital is the subject of the research. To detect near-surface structures at the chosen building site, nine Electrical Resistivity Tomography (ERT) profiles and twenty-four Ground Penetrating Radar (GPR) profiles were used in this study. After the necessary and appropriate processing, the results that extrapolated from all measured profiles of both tools, demonstrated that the research region can be separated into two different shallow layers. The (Higher Miocene) sandy limestone rock makes up the main first surface layer with thickness about 4 meters. The second layer consists of silty shale rock with thickness about 12 meters in some places. This The most obvious features that had an impact on building were normal faults in the WNW and ENE directions, with minor fractures between them, as well as a few shale lenses can reach diameters of 3 to 4 meters. Additionally, the retrieved findings from the two geophysical tools demonstrate that the shape and thickness of the inferred layers are in satisfactory correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Sciences History
Earth Sciences History GEOSCIENCES, MULTIDISCIPLINARY-HISTORY & PHILOSOPHY OF SCIENCE
CiteScore
1.00
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: Earth Sciences History promotes and publishes historical work on all areas of the earth sciences – including geology, geography, geophysics, oceanography, paleontology, meteorology, and climatology. The journal honors and encourages a variety of approaches to historical study: biography, history of ideas, social history, and histories of institutions, organizations, and techniques. Articles are peer reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信