J. A. Martínez, S. Imperiale, P. Joly, Jerónimo Rodríguez
{"title":"二维无牵引边界条件下线性各向同性弹性动力学的势能与有限元数值分析","authors":"J. A. Martínez, S. Imperiale, P. Joly, Jerónimo Rodríguez","doi":"10.1090/mcom/3613","DOIUrl":null,"url":null,"abstract":"When solving 2D linear elastodynamic equations in a homogeneous isotropic media, a Helmholtz decomposition of the displacement field decouples the equations into two scalar wave equations that only interact at the boundary. It is then natural to look for numerical schemes that independently solve the scalar equations and couple the solutions at the boundary. The case of rigid boundary condition was treated In [3, 2]. However in [4] the case of free surface boundary condition was proven to be unstable if a straightforward approach is used. Then an adequate functional framework as well as a time domain mixed formulation to circumvent these issues was presented. In this work we first review the formulation presented in [4] and propose a subsequent discretised formulation. We provide the complete stability analysis of the corresponding numerical scheme. Numerical results that illustrate the theory are also shown.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"54 1","pages":"1589-1636"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical analysis of a method for solving 2D linear isotropic elastodynamics with traction free boundary condition using potentials and finite elements\",\"authors\":\"J. A. Martínez, S. Imperiale, P. Joly, Jerónimo Rodríguez\",\"doi\":\"10.1090/mcom/3613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When solving 2D linear elastodynamic equations in a homogeneous isotropic media, a Helmholtz decomposition of the displacement field decouples the equations into two scalar wave equations that only interact at the boundary. It is then natural to look for numerical schemes that independently solve the scalar equations and couple the solutions at the boundary. The case of rigid boundary condition was treated In [3, 2]. However in [4] the case of free surface boundary condition was proven to be unstable if a straightforward approach is used. Then an adequate functional framework as well as a time domain mixed formulation to circumvent these issues was presented. In this work we first review the formulation presented in [4] and propose a subsequent discretised formulation. We provide the complete stability analysis of the corresponding numerical scheme. Numerical results that illustrate the theory are also shown.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"54 1\",\"pages\":\"1589-1636\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical analysis of a method for solving 2D linear isotropic elastodynamics with traction free boundary condition using potentials and finite elements
When solving 2D linear elastodynamic equations in a homogeneous isotropic media, a Helmholtz decomposition of the displacement field decouples the equations into two scalar wave equations that only interact at the boundary. It is then natural to look for numerical schemes that independently solve the scalar equations and couple the solutions at the boundary. The case of rigid boundary condition was treated In [3, 2]. However in [4] the case of free surface boundary condition was proven to be unstable if a straightforward approach is used. Then an adequate functional framework as well as a time domain mixed formulation to circumvent these issues was presented. In this work we first review the formulation presented in [4] and propose a subsequent discretised formulation. We provide the complete stability analysis of the corresponding numerical scheme. Numerical results that illustrate the theory are also shown.