关于积分域上反积分元素的线性分数变换的分母理想的注记

Junro Sato, Kiyoshi Baba, KEN-ICHI Yoshida
{"title":"关于积分域上反积分元素的线性分数变换的分母理想的注记","authors":"Junro Sato, Kiyoshi Baba, KEN-ICHI Yoshida","doi":"10.5036/MJIU.34.29","DOIUrl":null,"url":null,"abstract":"Let α be an anti-integral element of degree t over an integral domain R and φα(X) the minimal polynomial of α over the quotient field of R. Let β be a linear fractional transform of α, that is, β=cα-d/aα-b(a, b, c, d∈R, ad-bc∈R*)where R* is the group of units of R. First we describe I[β], the denominator ideal of β, in terms of I[α] and φα(a, b) where φα(X, Y)=Xtφα(Y/X). Next we introduce the ideal ˜{I}[α] concerning integral property of α and α-1. Then we describe ˜{I}[β] by using I[α], φα(a, b) and φα(c, d).","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"7 1","pages":"29-31"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on denominator ideals of linear fractional transforms of an anti-integral element over an integral domain\",\"authors\":\"Junro Sato, Kiyoshi Baba, KEN-ICHI Yoshida\",\"doi\":\"10.5036/MJIU.34.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let α be an anti-integral element of degree t over an integral domain R and φα(X) the minimal polynomial of α over the quotient field of R. Let β be a linear fractional transform of α, that is, β=cα-d/aα-b(a, b, c, d∈R, ad-bc∈R*)where R* is the group of units of R. First we describe I[β], the denominator ideal of β, in terms of I[α] and φα(a, b) where φα(X, Y)=Xtφα(Y/X). Next we introduce the ideal ˜{I}[α] concerning integral property of α and α-1. Then we describe ˜{I}[β] by using I[α], φα(a, b) and φα(c, d).\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"7 1\",\"pages\":\"29-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.34.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.34.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设α是积分域R上的一个t次反积分元,φα(X)是α在R的商域上的最小多项式。设β是α的一个线性分数变换,即β=cα-d/aα-b(a, b, c, d∈R, ad-bc∈R*),其中R*是R的一组单位。首先我们用I[α]和φα(a, b)表示β的分母理想I[β],其中φα(X, Y)=Xtφα(Y/X)。接下来我们引入关于α和α-1的积分性质的理想~ {I}[α]。然后我们描述˜{我}(β)通过使用我(α),φα(a, b)和φα(c, d)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on denominator ideals of linear fractional transforms of an anti-integral element over an integral domain
Let α be an anti-integral element of degree t over an integral domain R and φα(X) the minimal polynomial of α over the quotient field of R. Let β be a linear fractional transform of α, that is, β=cα-d/aα-b(a, b, c, d∈R, ad-bc∈R*)where R* is the group of units of R. First we describe I[β], the denominator ideal of β, in terms of I[α] and φα(a, b) where φα(X, Y)=Xtφα(Y/X). Next we introduce the ideal ˜{I}[α] concerning integral property of α and α-1. Then we describe ˜{I}[β] by using I[α], φα(a, b) and φα(c, d).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信