{"title":"证明杨米尔斯和引力的质量差距的进展(也许已经证明了…)","authors":"Stephane H Maes","doi":"10.31219/osf.io/q3xu5","DOIUrl":null,"url":null,"abstract":"Proving and constructing viable Yang Mills Gauge is a key concern for the Standard Model and an open problem. It has only be solved on lattices. Yet, gravity is not modeled in the Standard Model. We discuss that in a multi-fold universe where gravity emerges from entanglement effects, the spacetime is discrete (fractal with fractional dimensions, noncommutative and still Lorentz invariant). For any Lorentz invariant discrete spacetime, the lattice proofs and their lattice cell size independence completes the proof of the mass gap for Yang Mills Gauge theories. Continuous spacetime may or may not have a mass gap; but it does not matter if the real universe is discrete and Lorentz invariant.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Progress on Proving the Mass gap for Yang Mills and Gravity (Maybe it’s already proven…)\",\"authors\":\"Stephane H Maes\",\"doi\":\"10.31219/osf.io/q3xu5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proving and constructing viable Yang Mills Gauge is a key concern for the Standard Model and an open problem. It has only be solved on lattices. Yet, gravity is not modeled in the Standard Model. We discuss that in a multi-fold universe where gravity emerges from entanglement effects, the spacetime is discrete (fractal with fractional dimensions, noncommutative and still Lorentz invariant). For any Lorentz invariant discrete spacetime, the lattice proofs and their lattice cell size independence completes the proof of the mass gap for Yang Mills Gauge theories. Continuous spacetime may or may not have a mass gap; but it does not matter if the real universe is discrete and Lorentz invariant.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/q3xu5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/q3xu5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progress on Proving the Mass gap for Yang Mills and Gravity (Maybe it’s already proven…)
Proving and constructing viable Yang Mills Gauge is a key concern for the Standard Model and an open problem. It has only be solved on lattices. Yet, gravity is not modeled in the Standard Model. We discuss that in a multi-fold universe where gravity emerges from entanglement effects, the spacetime is discrete (fractal with fractional dimensions, noncommutative and still Lorentz invariant). For any Lorentz invariant discrete spacetime, the lattice proofs and their lattice cell size independence completes the proof of the mass gap for Yang Mills Gauge theories. Continuous spacetime may or may not have a mass gap; but it does not matter if the real universe is discrete and Lorentz invariant.