{"title":"一维柯西问题的标量抛物-双曲守恒律的特解及其应用","authors":"H. Watanabe","doi":"10.1007/s00030-022-00775-2","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49747,"journal":{"name":"Nodea-Nonlinear Differential Equations and Applications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particular solutions to one-dimensional Cauchy problems for scalar parabolic–hyperbolic conservation laws and their applications\",\"authors\":\"H. Watanabe\",\"doi\":\"10.1007/s00030-022-00775-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49747,\"journal\":{\"name\":\"Nodea-Nonlinear Differential Equations and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nodea-Nonlinear Differential Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-022-00775-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nodea-Nonlinear Differential Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00030-022-00775-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
期刊介绍:
Nonlinear Differential Equations and Applications (NoDEA) provides a forum for research contributions on nonlinear differential equations motivated by application to applied sciences.
The research areas of interest for NoDEA include, but are not limited to: deterministic and stochastic ordinary and partial differential equations, finite and infinite-dimensional dynamical systems, qualitative analysis of solutions, variational, topological and viscosity methods, mathematical control theory, complex dynamics and pattern formation, approximation and numerical aspects.