Boussinesq方程的线性化数值格式

A. G. Bratsos, Ch. Tsitouras, D. G. Natsis
{"title":"Boussinesq方程的线性化数值格式","authors":"A. G. Bratsos,&nbsp;Ch. Tsitouras,&nbsp;D. G. Natsis","doi":"10.1002/anac.200410021","DOIUrl":null,"url":null,"abstract":"<p>Two different linearized schemes are applied to a parametric finite-difference scheme concerning the numerical solution of the Boussinesq equation. At the first linearized scheme the nonlinear term of the equation is substituted by an appropriate value, while at the second scheme we use Taylor's expansion. Both schemes are analyzed for local truncation error, stability and convergence. The results of the experiments are examined for their accuracy for the single and the double-soliton waves to known from the bibliography numerical schemes. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 1","pages":"34-53"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410021","citationCount":"42","resultStr":"{\"title\":\"Linearized numerical schemes for the Boussinesq equation\",\"authors\":\"A. G. Bratsos,&nbsp;Ch. Tsitouras,&nbsp;D. G. Natsis\",\"doi\":\"10.1002/anac.200410021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two different linearized schemes are applied to a parametric finite-difference scheme concerning the numerical solution of the Boussinesq equation. At the first linearized scheme the nonlinear term of the equation is substituted by an appropriate value, while at the second scheme we use Taylor's expansion. Both schemes are analyzed for local truncation error, stability and convergence. The results of the experiments are examined for their accuracy for the single and the double-soliton waves to known from the bibliography numerical schemes. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"2 1\",\"pages\":\"34-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410021\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

对Boussinesq方程数值解的参数有限差分格式应用了两种不同的线性化格式。在第一种线性化格式下,方程的非线性项被替换为适当的值,而在第二种格式下,我们使用泰勒展开。分析了两种方案的局部截断误差、稳定性和收敛性。实验结果对参考文献中已知的单孤子波和双孤子波的精度进行了检验。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearized numerical schemes for the Boussinesq equation

Two different linearized schemes are applied to a parametric finite-difference scheme concerning the numerical solution of the Boussinesq equation. At the first linearized scheme the nonlinear term of the equation is substituted by an appropriate value, while at the second scheme we use Taylor's expansion. Both schemes are analyzed for local truncation error, stability and convergence. The results of the experiments are examined for their accuracy for the single and the double-soliton waves to known from the bibliography numerical schemes. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信