具有索利纳素数和任意素数域算术的资源约束系统椭圆曲线密码协处理器

Johann-Philipp Thiers, Malek Safieh, J. Freudenberger
{"title":"具有索利纳素数和任意素数域算术的资源约束系统椭圆曲线密码协处理器","authors":"Johann-Philipp Thiers, Malek Safieh, J. Freudenberger","doi":"10.1109/ZINC50678.2020.9161807","DOIUrl":null,"url":null,"abstract":"Many resource-constrained systems still rely on symmetric cryptography for verification and authentication. Asymmetric cryptographic systems provide higher security levels, but are very computational intensive. Hence, embedded systems can benefit from hardware assistance, i.e., coprocessors optimized for the required public key operations. In this work, we propose an elliptic curve cryptographic coprocessors design for resource-constrained systems. Many such coprocessor designs consider only special (Solinas) prime fields, which enable a low-complexity modulo arithmetic. Other implementations support arbitrary prime curves using the Montgomery reduction. These implementations typically require more time for the point multiplication. We present a coprocessor design that has low area requirements and enables a trade-off between performance and flexibility. The point multiplication can be performed either using a fast arithmetic based on Solinas primes or using a slower, but flexible Montgomery modular arithmetic.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"16 1","pages":"313-318"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Elliptic Curve Cryptographic Coprocessor for Resource-Constrained Systems with Arithmetic over Solinas Primes and Arbitrary Prime Fields\",\"authors\":\"Johann-Philipp Thiers, Malek Safieh, J. Freudenberger\",\"doi\":\"10.1109/ZINC50678.2020.9161807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many resource-constrained systems still rely on symmetric cryptography for verification and authentication. Asymmetric cryptographic systems provide higher security levels, but are very computational intensive. Hence, embedded systems can benefit from hardware assistance, i.e., coprocessors optimized for the required public key operations. In this work, we propose an elliptic curve cryptographic coprocessors design for resource-constrained systems. Many such coprocessor designs consider only special (Solinas) prime fields, which enable a low-complexity modulo arithmetic. Other implementations support arbitrary prime curves using the Montgomery reduction. These implementations typically require more time for the point multiplication. We present a coprocessor design that has low area requirements and enables a trade-off between performance and flexibility. The point multiplication can be performed either using a fast arithmetic based on Solinas primes or using a slower, but flexible Montgomery modular arithmetic.\",\"PeriodicalId\":6731,\"journal\":{\"name\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"16 1\",\"pages\":\"313-318\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC50678.2020.9161807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多资源受限的系统仍然依赖于对称加密进行验证和身份验证。非对称密码系统提供更高的安全级别,但计算量非常大。因此,嵌入式系统可以从硬件辅助中获益,即为所需的公钥操作优化的协处理器。在这项工作中,我们提出了一种资源受限系统的椭圆曲线密码协处理器设计。许多这样的协处理器设计只考虑特殊的(Solinas)素数域,从而实现低复杂度的模运算。其他实现使用Montgomery约简支持任意素数曲线。这些实现通常需要更多的时间进行点乘法运算。我们提出的协处理器设计具有低面积要求,并能够在性能和灵活性之间进行权衡。点乘法既可以使用基于Solinas素数的快速运算,也可以使用较慢但灵活的Montgomery模运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Elliptic Curve Cryptographic Coprocessor for Resource-Constrained Systems with Arithmetic over Solinas Primes and Arbitrary Prime Fields
Many resource-constrained systems still rely on symmetric cryptography for verification and authentication. Asymmetric cryptographic systems provide higher security levels, but are very computational intensive. Hence, embedded systems can benefit from hardware assistance, i.e., coprocessors optimized for the required public key operations. In this work, we propose an elliptic curve cryptographic coprocessors design for resource-constrained systems. Many such coprocessor designs consider only special (Solinas) prime fields, which enable a low-complexity modulo arithmetic. Other implementations support arbitrary prime curves using the Montgomery reduction. These implementations typically require more time for the point multiplication. We present a coprocessor design that has low area requirements and enables a trade-off between performance and flexibility. The point multiplication can be performed either using a fast arithmetic based on Solinas primes or using a slower, but flexible Montgomery modular arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信