具有不连续势的Sturm-Liouville算子逆谱问题的数值解

L. S. Efremova, G. Freiling
{"title":"具有不连续势的Sturm-Liouville算子逆谱问题的数值解","authors":"L. S. Efremova, G. Freiling","doi":"10.2478/s11533-013-0301-1","DOIUrl":null,"url":null,"abstract":"We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"102 1","pages":"2044-2051"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials\",\"authors\":\"L. S. Efremova, G. Freiling\",\"doi\":\"10.2478/s11533-013-0301-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"102 1\",\"pages\":\"2044-2051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0301-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0301-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

考虑有限区间上具有一个跳变的不连续势的Sturm-Liouville微分算子。作为主要结果,我们得到了一个恢复不连续点位置和跳跃高度的程序。根据我们的结果,我们应用了Rafler和Böckmann的广义Rundell-Sacks算法来更有效地重建势,并给出了一些数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials
We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信