{"title":"$H^s$具有次二次势的Schrödinger方程的波前集","authors":"Fumihito Abe, Keiichi Kato","doi":"10.55937/sut/1623939859","DOIUrl":null,"url":null,"abstract":". The aim of this work is to study regularity of solutions of the initial value problem for the Schr(cid:127)odinger equations with sub-quadratic potential. More precisely, we determine the H s wave front sets of solutions from the behavior at in(cid:12)nity of the initial data by using the characterization of the H s wave front set via wave packet transform.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$H^s$ wave front set for Schrödinger equations with sub-quadratic potential\",\"authors\":\"Fumihito Abe, Keiichi Kato\",\"doi\":\"10.55937/sut/1623939859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The aim of this work is to study regularity of solutions of the initial value problem for the Schr(cid:127)odinger equations with sub-quadratic potential. More precisely, we determine the H s wave front sets of solutions from the behavior at in(cid:12)nity of the initial data by using the characterization of the H s wave front set via wave packet transform.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1623939859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1623939859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
$H^s$ wave front set for Schrödinger equations with sub-quadratic potential
. The aim of this work is to study regularity of solutions of the initial value problem for the Schr(cid:127)odinger equations with sub-quadratic potential. More precisely, we determine the H s wave front sets of solutions from the behavior at in(cid:12)nity of the initial data by using the characterization of the H s wave front set via wave packet transform.