L. Mucchi, F. Cataliotti, L. Ronga, S. Caputo, Patrizio Marcocci
{"title":"基于实验的VLC传播模型","authors":"L. Mucchi, F. Cataliotti, L. Ronga, S. Caputo, Patrizio Marcocci","doi":"10.1109/EuCNC.2017.7980780","DOIUrl":null,"url":null,"abstract":"In this paper we investigate, through experimental measurements, a propagation model of the visible light. The scope is to come up with a fine tuned propagation model which also accounts for reflection from the optical bench. The experiments were conducted in the European Laboratory of Non Linear Spectroscopy (LENS). The proposed propagation model can be used to evaluate the performance of visible light communications, in particular in the context of indoor applications.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental-based propagation model for VLC\",\"authors\":\"L. Mucchi, F. Cataliotti, L. Ronga, S. Caputo, Patrizio Marcocci\",\"doi\":\"10.1109/EuCNC.2017.7980780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate, through experimental measurements, a propagation model of the visible light. The scope is to come up with a fine tuned propagation model which also accounts for reflection from the optical bench. The experiments were conducted in the European Laboratory of Non Linear Spectroscopy (LENS). The proposed propagation model can be used to evaluate the performance of visible light communications, in particular in the context of indoor applications.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"12 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we investigate, through experimental measurements, a propagation model of the visible light. The scope is to come up with a fine tuned propagation model which also accounts for reflection from the optical bench. The experiments were conducted in the European Laboratory of Non Linear Spectroscopy (LENS). The proposed propagation model can be used to evaluate the performance of visible light communications, in particular in the context of indoor applications.