{"title":"某型汽车连杆带润滑孔变化推力轴承静力分析","authors":"E. Suryono, Gilar Selo Yuda Pratama, A. Jamaldi","doi":"10.21831/jeatech.v4i1.58461","DOIUrl":null,"url":null,"abstract":"The research used the thrust bearing of a 1298cc automobile. The thrust-bearing material was annealed stainless steel (SS 201) with a tensile strength of 685 MPa and a yield strength of 292 MPa. The research objective was to obtain the best static thrust-bearing analysis results based on CAE software analysis. The research method included design stages, material parameters, fixed geometry determination, loading, meshing settings, computation, and result data. The simulation results were in the form of stress values, where the maximum stress value on the three-hole, one-hole, and non-hole thrust bearings were 227.2 MPa, 215.1 MPa, and 138 MPa, respectively. The non-hole thrust bearing could be the safest among all variations. The non-hole thrust bearing had a critical stress area value of 154 MPa, where it could absorb a force of 52.75% of the yield strength, the lowest strain was 8.531E-4, and had the highest minimum safety factor of 1.896.","PeriodicalId":8524,"journal":{"name":"Asian Journal of Engineering and Applied Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static analysis of thrust bearing with lubrication hole variation in an automobile's connecting rod\",\"authors\":\"E. Suryono, Gilar Selo Yuda Pratama, A. Jamaldi\",\"doi\":\"10.21831/jeatech.v4i1.58461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research used the thrust bearing of a 1298cc automobile. The thrust-bearing material was annealed stainless steel (SS 201) with a tensile strength of 685 MPa and a yield strength of 292 MPa. The research objective was to obtain the best static thrust-bearing analysis results based on CAE software analysis. The research method included design stages, material parameters, fixed geometry determination, loading, meshing settings, computation, and result data. The simulation results were in the form of stress values, where the maximum stress value on the three-hole, one-hole, and non-hole thrust bearings were 227.2 MPa, 215.1 MPa, and 138 MPa, respectively. The non-hole thrust bearing could be the safest among all variations. The non-hole thrust bearing had a critical stress area value of 154 MPa, where it could absorb a force of 52.75% of the yield strength, the lowest strain was 8.531E-4, and had the highest minimum safety factor of 1.896.\",\"PeriodicalId\":8524,\"journal\":{\"name\":\"Asian Journal of Engineering and Applied Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Engineering and Applied Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21831/jeatech.v4i1.58461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Engineering and Applied Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21831/jeatech.v4i1.58461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
该研究使用了1298cc汽车的推力轴承。推力轴承材料为抗拉强度为685 MPa、屈服强度为292 MPa的退火不锈钢(SS 201)。研究目的是基于CAE软件分析,获得最佳的静力推力轴承分析结果。研究方法包括设计阶段、材料参数、固定几何形状的确定、加载、网格设置、计算和结果数据。仿真结果以应力值形式呈现,其中三孔、一孔和非孔止推轴承的最大应力值分别为227.2 MPa、215.1 MPa和138 MPa。无孔推力轴承是所有推力轴承中最安全的。无孔止推轴承的临界应力面积值为154 MPa,可承受屈服强度的52.75%,最小应变为8.5331 e -4,最小安全系数最高为1.896。
Static analysis of thrust bearing with lubrication hole variation in an automobile's connecting rod
The research used the thrust bearing of a 1298cc automobile. The thrust-bearing material was annealed stainless steel (SS 201) with a tensile strength of 685 MPa and a yield strength of 292 MPa. The research objective was to obtain the best static thrust-bearing analysis results based on CAE software analysis. The research method included design stages, material parameters, fixed geometry determination, loading, meshing settings, computation, and result data. The simulation results were in the form of stress values, where the maximum stress value on the three-hole, one-hole, and non-hole thrust bearings were 227.2 MPa, 215.1 MPa, and 138 MPa, respectively. The non-hole thrust bearing could be the safest among all variations. The non-hole thrust bearing had a critical stress area value of 154 MPa, where it could absorb a force of 52.75% of the yield strength, the lowest strain was 8.531E-4, and had the highest minimum safety factor of 1.896.