Y. Hardiyanti, Thareq Barasabha, C. Anam, N. Novitrian, F. Haryanto, A. Waris
{"title":"基于二维剂量分布的水影病例辐射研究场尺寸计算环境敏感性分析研究","authors":"Y. Hardiyanti, Thareq Barasabha, C. Anam, N. Novitrian, F. Haryanto, A. Waris","doi":"10.17140/ROJ-4-130","DOIUrl":null,"url":null,"abstract":"Purpose This study analysed the sensitivity of the field size from variations in the target volume dimensions, depth, and position. The variations in the target volume analysis were used to determine the width of the field size. Thus, the quality control of the radiation beam can be obtained. Materials and Methods The computed tomography (CT) image of the IBA Dose 1 type of water phantom consists of 350 slices. Variations in the dimension of the target volume were modelled in 10×10×10 cm3, 10×12×10 cm3 , 10.2×10×10.2 cm3, and 15×15×15 cm3. Beam parameters use one beam of irradiation on the central axis 0°, 6 MV energy, 100 cm source-skin distance (SSD), beamlet delta x, and y set to 0.1 cm. Dose distribution in the form of the XZ isodose curve and dose profile was used to observe the field size. Results In this study, the isodose curve was successfully displayed in the XZ isodose curve. The field size’s sensitivity has been successfully reviewed from variations of the target volume, depth, and position. The target X and Z direction analysis is used in determining the width and length of the field size. Conclusion The analysis related to the field size sensitivity study was obtained from a relatively valid calculation. The field size was evaluated with variations in depth of 1.5 cm, 5 cm, 10 cm, and variations in positions of 10 cm, 12 cm, 14 cm, 18 cm, and 20 cm. This study will be used as a reference to validate the distribution of computational environment for radiotherapy research (CERR) dose in the future. Thus, the accuracy of the dose calculation can be obtained.","PeriodicalId":91603,"journal":{"name":"Radiology - open journal","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Analysis the Sensitivity of the Computational Environment for Radiological Research Field Size Based on Two Dimensional Dose Distribution for Water Phantom Cases\",\"authors\":\"Y. Hardiyanti, Thareq Barasabha, C. Anam, N. Novitrian, F. Haryanto, A. Waris\",\"doi\":\"10.17140/ROJ-4-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose This study analysed the sensitivity of the field size from variations in the target volume dimensions, depth, and position. The variations in the target volume analysis were used to determine the width of the field size. Thus, the quality control of the radiation beam can be obtained. Materials and Methods The computed tomography (CT) image of the IBA Dose 1 type of water phantom consists of 350 slices. Variations in the dimension of the target volume were modelled in 10×10×10 cm3, 10×12×10 cm3 , 10.2×10×10.2 cm3, and 15×15×15 cm3. Beam parameters use one beam of irradiation on the central axis 0°, 6 MV energy, 100 cm source-skin distance (SSD), beamlet delta x, and y set to 0.1 cm. Dose distribution in the form of the XZ isodose curve and dose profile was used to observe the field size. Results In this study, the isodose curve was successfully displayed in the XZ isodose curve. The field size’s sensitivity has been successfully reviewed from variations of the target volume, depth, and position. The target X and Z direction analysis is used in determining the width and length of the field size. Conclusion The analysis related to the field size sensitivity study was obtained from a relatively valid calculation. The field size was evaluated with variations in depth of 1.5 cm, 5 cm, 10 cm, and variations in positions of 10 cm, 12 cm, 14 cm, 18 cm, and 20 cm. This study will be used as a reference to validate the distribution of computational environment for radiotherapy research (CERR) dose in the future. Thus, the accuracy of the dose calculation can be obtained.\",\"PeriodicalId\":91603,\"journal\":{\"name\":\"Radiology - open journal\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology - open journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17140/ROJ-4-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology - open journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17140/ROJ-4-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Analysis the Sensitivity of the Computational Environment for Radiological Research Field Size Based on Two Dimensional Dose Distribution for Water Phantom Cases
Purpose This study analysed the sensitivity of the field size from variations in the target volume dimensions, depth, and position. The variations in the target volume analysis were used to determine the width of the field size. Thus, the quality control of the radiation beam can be obtained. Materials and Methods The computed tomography (CT) image of the IBA Dose 1 type of water phantom consists of 350 slices. Variations in the dimension of the target volume were modelled in 10×10×10 cm3, 10×12×10 cm3 , 10.2×10×10.2 cm3, and 15×15×15 cm3. Beam parameters use one beam of irradiation on the central axis 0°, 6 MV energy, 100 cm source-skin distance (SSD), beamlet delta x, and y set to 0.1 cm. Dose distribution in the form of the XZ isodose curve and dose profile was used to observe the field size. Results In this study, the isodose curve was successfully displayed in the XZ isodose curve. The field size’s sensitivity has been successfully reviewed from variations of the target volume, depth, and position. The target X and Z direction analysis is used in determining the width and length of the field size. Conclusion The analysis related to the field size sensitivity study was obtained from a relatively valid calculation. The field size was evaluated with variations in depth of 1.5 cm, 5 cm, 10 cm, and variations in positions of 10 cm, 12 cm, 14 cm, 18 cm, and 20 cm. This study will be used as a reference to validate the distribution of computational environment for radiotherapy research (CERR) dose in the future. Thus, the accuracy of the dose calculation can be obtained.