关于复反射群G(d,1,n)元胞特征的一个猜想

Q4 Mathematics
Abel Lacabanne
{"title":"关于复反射群G(d,1,n)元胞特征的一个猜想","authors":"Abel Lacabanne","doi":"10.5802/ambp.390","DOIUrl":null,"url":null,"abstract":"We propose a conjecture relating two different sets of characters for the complex reflection group $G(d,1,n)$. From one side, the characters are afforded by Calogero-Moser cells, a conjectural generalisation of Kazhdan-Lusztig cells for a complex reflection group. From the other side, the characters arise from a level $d$ irreducible integrable representations of $\\mathcal{U}_q(\\mathfrak{sl}_{\\infty})$. We prove this conjecture in some cases: in full generality for $G(d,1,2)$ and for generic parameters for $G(d,1,n)$.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a conjecture about cellular characters for the complex reflection group $G(d,1,n)$\",\"authors\":\"Abel Lacabanne\",\"doi\":\"10.5802/ambp.390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a conjecture relating two different sets of characters for the complex reflection group $G(d,1,n)$. From one side, the characters are afforded by Calogero-Moser cells, a conjectural generalisation of Kazhdan-Lusztig cells for a complex reflection group. From the other side, the characters arise from a level $d$ irreducible integrable representations of $\\\\mathcal{U}_q(\\\\mathfrak{sl}_{\\\\infty})$. We prove this conjecture in some cases: in full generality for $G(d,1,2)$ and for generic parameters for $G(d,1,n)$.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个关于复反射群$G(d,1,n)$的两组不同字符的猜想。一方面,这些特征是由Calogero-Moser单元提供的,这是对复杂反射群的Kazhdan-Lusztig单元的推测推广。从另一方面来看,字符产生于$\mathcal{U}_q(\mathfrak{sl}_{\infty})$的一级$d$不可约可积表示。我们在某些情况下证明了这个猜想:对于$G(d,1,2)$的完全一般性和对于$G(d,1,n)$的一般参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a conjecture about cellular characters for the complex reflection group $G(d,1,n)$
We propose a conjecture relating two different sets of characters for the complex reflection group $G(d,1,n)$. From one side, the characters are afforded by Calogero-Moser cells, a conjectural generalisation of Kazhdan-Lusztig cells for a complex reflection group. From the other side, the characters arise from a level $d$ irreducible integrable representations of $\mathcal{U}_q(\mathfrak{sl}_{\infty})$. We prove this conjecture in some cases: in full generality for $G(d,1,2)$ and for generic parameters for $G(d,1,n)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信