四维静态时空中的标量-扭转理论

M. ., F. Akbar, B. Gunara
{"title":"四维静态时空中的标量-扭转理论","authors":"M. ., F. Akbar, B. Gunara","doi":"10.5614/itb.ijp.2021.32.2.3","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of static spacetimes scalar-torsion theories in four dimensioanal static spacetimes with the scalar potential turned on. We discover that the 2-dimensional submanifold must admit constant triplet structures, one of which is the torsion scalar. This indicates that these equations of motion can be reduced to a single highly non-linear ordinary differential equation known as the master equation. Then, we show that there are no exact solution of the scalar-torsion theory in four dimensions considering the Sinh-Gordon potential.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar-Torsion Theories in Four Dimensional Static Spacetimes\",\"authors\":\"M. ., F. Akbar, B. Gunara\",\"doi\":\"10.5614/itb.ijp.2021.32.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a class of static spacetimes scalar-torsion theories in four dimensioanal static spacetimes with the scalar potential turned on. We discover that the 2-dimensional submanifold must admit constant triplet structures, one of which is the torsion scalar. This indicates that these equations of motion can be reduced to a single highly non-linear ordinary differential equation known as the master equation. Then, we show that there are no exact solution of the scalar-torsion theory in four dimensions considering the Sinh-Gordon potential.\",\"PeriodicalId\":13535,\"journal\":{\"name\":\"Indonesian Journal of Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itb.ijp.2021.32.2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2021.32.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了四维静态时空中具有标量势的一类静态时空标量扭转理论。我们发现二维子流形必须承认常数三重结构,其中一个是扭转标量。这表明,这些运动方程可以简化为一个高度非线性的常微分方程,即主方程。然后,我们证明了考虑Sinh-Gordon势的四维标量-扭转理论不存在精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar-Torsion Theories in Four Dimensional Static Spacetimes
In this paper, we consider a class of static spacetimes scalar-torsion theories in four dimensioanal static spacetimes with the scalar potential turned on. We discover that the 2-dimensional submanifold must admit constant triplet structures, one of which is the torsion scalar. This indicates that these equations of motion can be reduced to a single highly non-linear ordinary differential equation known as the master equation. Then, we show that there are no exact solution of the scalar-torsion theory in four dimensions considering the Sinh-Gordon potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信