{"title":"利用半物理网络模型模拟野火传播","authors":"J.K. Adou , A.D.V. Brou , B. Porterie","doi":"10.1016/j.csfs.2015.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we present a surface wildfire model which can be used to develop and test new firefighting strategies and land use planning practices. This model is simple, easy to implement and can predict the rate of fire spread, the fire contour and both burning and burned areas. It also incorporates weather conditions and land topography. The predictive capability of the model is partially assessed by comparison with data from laboratory-scale and prescribed burning experiments. A sensitivity analysis is conducted to identify the most influential input model parameters controlling fire propagation.</p></div>","PeriodicalId":100219,"journal":{"name":"Case Studies in Fire Safety","volume":"4 ","pages":"Pages 11-18"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfs.2015.05.003","citationCount":"13","resultStr":"{\"title\":\"Modeling wildland fire propagation using a semi-physical network model\",\"authors\":\"J.K. Adou , A.D.V. Brou , B. Porterie\",\"doi\":\"10.1016/j.csfs.2015.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we present a surface wildfire model which can be used to develop and test new firefighting strategies and land use planning practices. This model is simple, easy to implement and can predict the rate of fire spread, the fire contour and both burning and burned areas. It also incorporates weather conditions and land topography. The predictive capability of the model is partially assessed by comparison with data from laboratory-scale and prescribed burning experiments. A sensitivity analysis is conducted to identify the most influential input model parameters controlling fire propagation.</p></div>\",\"PeriodicalId\":100219,\"journal\":{\"name\":\"Case Studies in Fire Safety\",\"volume\":\"4 \",\"pages\":\"Pages 11-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfs.2015.05.003\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Fire Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214398X15000084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Fire Safety","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214398X15000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling wildland fire propagation using a semi-physical network model
In this paper we present a surface wildfire model which can be used to develop and test new firefighting strategies and land use planning practices. This model is simple, easy to implement and can predict the rate of fire spread, the fire contour and both burning and burned areas. It also incorporates weather conditions and land topography. The predictive capability of the model is partially assessed by comparison with data from laboratory-scale and prescribed burning experiments. A sensitivity analysis is conducted to identify the most influential input model parameters controlling fire propagation.