{"title":"论算子aczsami不等式及其反向","authors":"S. Furuichi, M. Jabbarzadeh, V. Kaleibary","doi":"10.7153/JMI-2021-15-19","DOIUrl":null,"url":null,"abstract":"In this paper, we present some operator and eigenvalue inequalities involving operator monotone, doubly concave and doubly convex functions. \nThese inequalities provide some variants of operator Aczel inequality and its reverse via generalized Kantorovich constant.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"424 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the operator Aczél inequality and its reverse\",\"authors\":\"S. Furuichi, M. Jabbarzadeh, V. Kaleibary\",\"doi\":\"10.7153/JMI-2021-15-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present some operator and eigenvalue inequalities involving operator monotone, doubly concave and doubly convex functions. \\nThese inequalities provide some variants of operator Aczel inequality and its reverse via generalized Kantorovich constant.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"424 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/JMI-2021-15-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/JMI-2021-15-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present some operator and eigenvalue inequalities involving operator monotone, doubly concave and doubly convex functions.
These inequalities provide some variants of operator Aczel inequality and its reverse via generalized Kantorovich constant.