{"title":"水电解制氢结果的发电机组特性分析","authors":"D. H. Praswanto, S. Djiwo, B. R. P. D. Palevi","doi":"10.31328/jsae.v6i1.4236","DOIUrl":null,"url":null,"abstract":"Hydrogen gas is a type of alternative fuel for transportation that can serve a number of other potential needs. Water electrolysis is one way to get hydrogen gas. This study aims to determine the results of water electrolysis with three catalysts and mixed metal electrodes which are then applied to generator motor engines. The research method used was an experimental method with variations in electrolysis using KOH and NaOH base catalysts, H2SO4 acid catalysts, and stainless steel 316 electrodes. The best results for H2 gas production in this study were obtained with a 2M H2SO4 catalyst with a gas yield of 244.9mL H2 gas, while The lowest yield in this study was the 1M concentration of 1M NaOH catalyst of 12.5mL. The best results for H2 gas production were varied with pertalite fuel and then tested with a generator engine. Testing the generator motor engine is measured arm length and mass with a machine dynamometer. After testing, the data is obtained which is then analyzed to obtain the value of torque (Nm) and electric motor power (kW), and driving motor power (HP). The maximum energy produced pertalite + H2 gas has increased by 2.27kW on the electric motor and power of 4.13HP on the driving motor, while for pertalite fuel alone the power generated is 1.44kW on the electric motor and power of 2.62HP on the driving motor.[1] S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, “Current status, research trends, and challenges in water electrolysis science and technology,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26036–26058, 2020, doi: 10.1016/j.ijhydene.2020.03.109.[2] Y. Song, X. Zhang, K. Xie, G. Wang, and X. Bao, “High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects,” Adv. Mater., vol. 31, no. 50, pp. 1–18, 2019, doi: 10.1002/adma.201902033.[3] A. Nechache and S. Hody, “Alternative and innovative solid oxide electrolysis cell materials: A short review,” Renew. Sustain. Energy Rev., vol. 149, 2021, doi: 10.1016/j.rser.2021.111322.[4] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, “Future cost and performance of water electrolysis: An expert elicitation study,” Int. J. Hydrogen Energy, vol. 42, no. 52, pp. 30470–30492, 2017, doi: 10.1016/j.ijhydene.2017.10.045.[5] S. Wang, A. Lu, and C. J. Zhong, “Hydrogen production from water electrolysis: role of catalysts,” Nano Converg., vol. 8, no. 1, 2021, doi: 10.1186/s40580-021-00254-x.[6] N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p. 110255, 2021, doi: 10.1016/j.rser.2020.110255.[7] J. Brauns and T. Turek, “Alkaline water electrolysis powered by renewable energy: A review,” Processes, vol. 8, no. 2, 2020, doi: 10.3390/pr8020248.[8] S. Anwar, F. Khan, Y. Zhang, and A. Djire, “Recent development in electrocatalysts for hydrogen production through water electrolysis,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32284–32317, 2021, doi: 10.1016/j.ijhydene.2021.06.191.[9] W. Tong et al., “Electrolysis of low-grade and saline surface water,” Nat. Energy, vol. 5, no. 5, pp. 367–377, 2020, doi: 10.1038/s41560-020-0550-8.[10] T. Nguyen, Z. Abdin, T. Holm, and W. Mérida, “Grid-connected hydrogen production via large-scale water electrolysis,” Energy Convers. Manag., vol. 200, no. September, p. 112108, 2019, doi: 10.1016/j.enconman.2019.112108.[11] A. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 2440–2454, 2018, doi: 10.1016/j.rser.2017.09.003.[12] I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070–26079, 2020, doi: 10.1016/j.ijhydene.2019.11.011.[13] L. Peng and Z. Wei, “Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell,” Engineering, vol. 6, no. 6, pp. 653–679, 2020, doi: 10.1016/j.eng.2019.07.028.[14] S. Klemenz, A. Stegmüller, S. Yoon, C. Felser, H. Tüysüz, and A. Weidenkaff, “Holistic View on Materials Development: Water Electrolysis as a Case Study,” Angew. Chemie - Int. Ed., vol. 60, no. 37, pp. 20094–20100, 2021, doi: 10.1002/anie.202105324.[15] H. K. Ju, S. Badwal, and S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Appl. Energy, vol. 231, no. May, pp. 502–533, 2018, doi: 10.1016/j.apenergy.2018.09.125.[16] F. ezzahra Chakik, M. Kaddami, and M. Mikou, “Effect of operating parameters on hydrogen production by electrolysis of water,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25550–25557, 2017, doi: 10.1016/j.ijhydene.2017.07.015.[17] F. Gutiérrez-Martín, L. Amodio, and M. Pagano, “Hydrogen production by water electrolysis and off-grid solar PV,” Int. J. Hydrogen Energy, vol. 46, no. 57, pp. 29038–29048, 2021, doi: 10.1016/j.ijhydene.2020.09.098.","PeriodicalId":13778,"journal":{"name":"International Journal of Applied Science and Engineering","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Hydrogen Gas Production Results in Water Electrolysis Process on Genset Characteristics\",\"authors\":\"D. H. Praswanto, S. Djiwo, B. R. P. D. Palevi\",\"doi\":\"10.31328/jsae.v6i1.4236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen gas is a type of alternative fuel for transportation that can serve a number of other potential needs. Water electrolysis is one way to get hydrogen gas. This study aims to determine the results of water electrolysis with three catalysts and mixed metal electrodes which are then applied to generator motor engines. The research method used was an experimental method with variations in electrolysis using KOH and NaOH base catalysts, H2SO4 acid catalysts, and stainless steel 316 electrodes. The best results for H2 gas production in this study were obtained with a 2M H2SO4 catalyst with a gas yield of 244.9mL H2 gas, while The lowest yield in this study was the 1M concentration of 1M NaOH catalyst of 12.5mL. The best results for H2 gas production were varied with pertalite fuel and then tested with a generator engine. Testing the generator motor engine is measured arm length and mass with a machine dynamometer. After testing, the data is obtained which is then analyzed to obtain the value of torque (Nm) and electric motor power (kW), and driving motor power (HP). The maximum energy produced pertalite + H2 gas has increased by 2.27kW on the electric motor and power of 4.13HP on the driving motor, while for pertalite fuel alone the power generated is 1.44kW on the electric motor and power of 2.62HP on the driving motor.[1] S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, “Current status, research trends, and challenges in water electrolysis science and technology,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26036–26058, 2020, doi: 10.1016/j.ijhydene.2020.03.109.[2] Y. Song, X. Zhang, K. Xie, G. Wang, and X. Bao, “High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects,” Adv. Mater., vol. 31, no. 50, pp. 1–18, 2019, doi: 10.1002/adma.201902033.[3] A. Nechache and S. Hody, “Alternative and innovative solid oxide electrolysis cell materials: A short review,” Renew. Sustain. Energy Rev., vol. 149, 2021, doi: 10.1016/j.rser.2021.111322.[4] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, “Future cost and performance of water electrolysis: An expert elicitation study,” Int. J. Hydrogen Energy, vol. 42, no. 52, pp. 30470–30492, 2017, doi: 10.1016/j.ijhydene.2017.10.045.[5] S. Wang, A. Lu, and C. J. Zhong, “Hydrogen production from water electrolysis: role of catalysts,” Nano Converg., vol. 8, no. 1, 2021, doi: 10.1186/s40580-021-00254-x.[6] N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p. 110255, 2021, doi: 10.1016/j.rser.2020.110255.[7] J. Brauns and T. Turek, “Alkaline water electrolysis powered by renewable energy: A review,” Processes, vol. 8, no. 2, 2020, doi: 10.3390/pr8020248.[8] S. Anwar, F. Khan, Y. Zhang, and A. Djire, “Recent development in electrocatalysts for hydrogen production through water electrolysis,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32284–32317, 2021, doi: 10.1016/j.ijhydene.2021.06.191.[9] W. Tong et al., “Electrolysis of low-grade and saline surface water,” Nat. Energy, vol. 5, no. 5, pp. 367–377, 2020, doi: 10.1038/s41560-020-0550-8.[10] T. Nguyen, Z. Abdin, T. Holm, and W. Mérida, “Grid-connected hydrogen production via large-scale water electrolysis,” Energy Convers. Manag., vol. 200, no. September, p. 112108, 2019, doi: 10.1016/j.enconman.2019.112108.[11] A. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 2440–2454, 2018, doi: 10.1016/j.rser.2017.09.003.[12] I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070–26079, 2020, doi: 10.1016/j.ijhydene.2019.11.011.[13] L. Peng and Z. Wei, “Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell,” Engineering, vol. 6, no. 6, pp. 653–679, 2020, doi: 10.1016/j.eng.2019.07.028.[14] S. Klemenz, A. Stegmüller, S. Yoon, C. Felser, H. Tüysüz, and A. Weidenkaff, “Holistic View on Materials Development: Water Electrolysis as a Case Study,” Angew. Chemie - Int. Ed., vol. 60, no. 37, pp. 20094–20100, 2021, doi: 10.1002/anie.202105324.[15] H. K. Ju, S. Badwal, and S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Appl. Energy, vol. 231, no. May, pp. 502–533, 2018, doi: 10.1016/j.apenergy.2018.09.125.[16] F. ezzahra Chakik, M. Kaddami, and M. Mikou, “Effect of operating parameters on hydrogen production by electrolysis of water,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25550–25557, 2017, doi: 10.1016/j.ijhydene.2017.07.015.[17] F. Gutiérrez-Martín, L. Amodio, and M. Pagano, “Hydrogen production by water electrolysis and off-grid solar PV,” Int. J. Hydrogen Energy, vol. 46, no. 57, pp. 29038–29048, 2021, doi: 10.1016/j.ijhydene.2020.09.098.\",\"PeriodicalId\":13778,\"journal\":{\"name\":\"International Journal of Applied Science and Engineering\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31328/jsae.v6i1.4236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/jsae.v6i1.4236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
氢气是一种交通运输的替代燃料,可以满足许多其他潜在的需求。水电解是得到氢气的一种方法。本研究旨在确定三种催化剂和混合金属电极的水电解结果,然后应用于发电机发动机。采用KOH和NaOH碱催化剂、H2SO4酸催化剂和不锈钢316电极,采用实验方法进行电解。本研究中产氢效果最好的是2M H2SO4催化剂,H2气产率为244.9mL,而本研究中产氢效果最差的是1M NaOH催化剂浓度为12.5mL,为1M浓度。以pertalite为燃料,对产氢效果进行了优化,并在发电机上进行了试验。测试发电机电机发动机是测量臂长和质量的机器测功机。测试后得到数据,分析得到转矩(Nm)、电机功率(kW)、驱动电机功率(HP)值。pertalite + H2气体在电动机上产生的最大能量增加了2.27kW,驱动电机的功率增加了4.13HP,而单独使用pertalite燃料时,电机产生的最大能量为1.44kW,驱动电机的最大功率为2.62HP。[1]陈晓明,陈晓明,陈晓明,“水电解技术的研究现状、发展趋势和挑战”,中国科学院学报(自然科学版)。《氢能源》第45卷第1期。49, pp. 26036-26058, 2020, doi: 10.1016/ j.j ijhydene.2020.03.109.[2]宋勇,张晓明,谢克平,王刚,鲍晓明,“固体氧化物电解池高温CO2电解的研究进展、挑战与展望”,vol . 11, no . 11。,第31卷,第31期。2019年50页。队,doi: 10.1002 / adma.201902033。[3]A. Nechache和S. Hody,“新型固体氧化物电解电池材料的研究进展”,《再生》。维持。能源导报,vol. 49, 2021, doi: 10.1016/j.rser.2021.111322.[4]O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson和S. Few,“未来水电解的成本和性能:专家启发研究”,第2期。《氢能源》,第42卷,第2期。52, pp. 30470-30492, 2017, doi: 10.1016/ j.j ijhydene.2017.10.045.[5]王淑娟,卢爱华,钟春杰,“电解水制氢技术的研究进展”,环境工程学报。,第8卷,第1期。2021 . doi: 10.1186 / s40580 - 021 - 00254 - x。[6]N. A. Burton, R. V. Padilla, A. Rose和H. Habibullah,“提高太阳能水电解制氢的效率”,续刊。维持。《能源启示录》,第135卷,第135期。2020年7月,p. 110255, 2021, doi: 10.1016/j.rser.2020.110255.[7]J. Brauns和T. Turek,“可再生能源驱动的碱性电解:综述”,《工艺》,第8卷,第2期。2, 2020, doi: 10.3390/pr8020248.[8]张勇,张勇,张志强,“电解水制氢电催化剂的研究进展”,中国化工大学学报(自然科学版)。《氢能源》第46卷第1期。63, pp. 32284-32317, 2021, doi: 10.1016/ j.j ijhydene.2021.06.191.[9]W. Tong et al.,“低等级和含盐地表水的电解”,《新能源》,第5卷,第5期。5,页367 - 377,2020,doi: 10.1038 / s41560 - 020 - 0550 - 8。[10]T. Nguyen, Z. Abdin, T. Holm和W. msamrida,“通过大规模水电解并网制氢”,《能源转换》。等内容。,第200卷,第2期。2019年9月,p. 112108, doi: 10.1016/ j.n enconman.2019.112108.[11]A. Buttler和H. Spliethoff,“电制气和电制液在水电储能、电网平衡和部门耦合中的应用现状:综述”,续刊。维持。《能源启示录》,第82卷,第2期。2018年2月,pp. 2440-2454, doi: 10.1016/j.rser.2017.09.003.[12]陈晓明,陈晓明,陈晓明,陈晓明,“阴离子交换膜在低成本电解废水处理中的应用”,环境科学与技术,2011。《氢能源》第45卷第1期。49, pp. 26070-26079, 2020, doi: 10.1016/ j.j jhydene.2019.11.011.[13]彭丽丽,魏忠,“水-水电化学能量转换的催化剂工程:水电解与氢燃料电池”,工程技术,vol. 6, no. 5。6日,页。653 - 679年,2020年,doi: 10.1016 / j.eng.2019.07.028。[14]S. Klemenz, a . stegm<e:1> ller, S. Yoon, C. Felser, H. tys<e:1> z, a . Weidenkaff,“材料发展的整体观点:以水电解为例”,新环境。化学- Int。编,第60卷,第60号。37, pp. 20094-20100, 2021, doi: 10.1002/anie.202105324.[15]H. K. Ju, S. Badwal和S. Giddey,“碳和碳氢化合物辅助电解制氢的综合综述,”苹果。《能源》,第231卷,第2期。May, pp. 502-533, 2018, doi: 10.1016/ j.p apenergy.2018.09.125.[16]F. ezzahra Chakik, M. Kaddami和M。
Analysis of Hydrogen Gas Production Results in Water Electrolysis Process on Genset Characteristics
Hydrogen gas is a type of alternative fuel for transportation that can serve a number of other potential needs. Water electrolysis is one way to get hydrogen gas. This study aims to determine the results of water electrolysis with three catalysts and mixed metal electrodes which are then applied to generator motor engines. The research method used was an experimental method with variations in electrolysis using KOH and NaOH base catalysts, H2SO4 acid catalysts, and stainless steel 316 electrodes. The best results for H2 gas production in this study were obtained with a 2M H2SO4 catalyst with a gas yield of 244.9mL H2 gas, while The lowest yield in this study was the 1M concentration of 1M NaOH catalyst of 12.5mL. The best results for H2 gas production were varied with pertalite fuel and then tested with a generator engine. Testing the generator motor engine is measured arm length and mass with a machine dynamometer. After testing, the data is obtained which is then analyzed to obtain the value of torque (Nm) and electric motor power (kW), and driving motor power (HP). The maximum energy produced pertalite + H2 gas has increased by 2.27kW on the electric motor and power of 4.13HP on the driving motor, while for pertalite fuel alone the power generated is 1.44kW on the electric motor and power of 2.62HP on the driving motor.[1] S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, “Current status, research trends, and challenges in water electrolysis science and technology,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26036–26058, 2020, doi: 10.1016/j.ijhydene.2020.03.109.[2] Y. Song, X. Zhang, K. Xie, G. Wang, and X. Bao, “High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects,” Adv. Mater., vol. 31, no. 50, pp. 1–18, 2019, doi: 10.1002/adma.201902033.[3] A. Nechache and S. Hody, “Alternative and innovative solid oxide electrolysis cell materials: A short review,” Renew. Sustain. Energy Rev., vol. 149, 2021, doi: 10.1016/j.rser.2021.111322.[4] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, “Future cost and performance of water electrolysis: An expert elicitation study,” Int. J. Hydrogen Energy, vol. 42, no. 52, pp. 30470–30492, 2017, doi: 10.1016/j.ijhydene.2017.10.045.[5] S. Wang, A. Lu, and C. J. Zhong, “Hydrogen production from water electrolysis: role of catalysts,” Nano Converg., vol. 8, no. 1, 2021, doi: 10.1186/s40580-021-00254-x.[6] N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p. 110255, 2021, doi: 10.1016/j.rser.2020.110255.[7] J. Brauns and T. Turek, “Alkaline water electrolysis powered by renewable energy: A review,” Processes, vol. 8, no. 2, 2020, doi: 10.3390/pr8020248.[8] S. Anwar, F. Khan, Y. Zhang, and A. Djire, “Recent development in electrocatalysts for hydrogen production through water electrolysis,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32284–32317, 2021, doi: 10.1016/j.ijhydene.2021.06.191.[9] W. Tong et al., “Electrolysis of low-grade and saline surface water,” Nat. Energy, vol. 5, no. 5, pp. 367–377, 2020, doi: 10.1038/s41560-020-0550-8.[10] T. Nguyen, Z. Abdin, T. Holm, and W. Mérida, “Grid-connected hydrogen production via large-scale water electrolysis,” Energy Convers. Manag., vol. 200, no. September, p. 112108, 2019, doi: 10.1016/j.enconman.2019.112108.[11] A. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 2440–2454, 2018, doi: 10.1016/j.rser.2017.09.003.[12] I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070–26079, 2020, doi: 10.1016/j.ijhydene.2019.11.011.[13] L. Peng and Z. Wei, “Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell,” Engineering, vol. 6, no. 6, pp. 653–679, 2020, doi: 10.1016/j.eng.2019.07.028.[14] S. Klemenz, A. Stegmüller, S. Yoon, C. Felser, H. Tüysüz, and A. Weidenkaff, “Holistic View on Materials Development: Water Electrolysis as a Case Study,” Angew. Chemie - Int. Ed., vol. 60, no. 37, pp. 20094–20100, 2021, doi: 10.1002/anie.202105324.[15] H. K. Ju, S. Badwal, and S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Appl. Energy, vol. 231, no. May, pp. 502–533, 2018, doi: 10.1016/j.apenergy.2018.09.125.[16] F. ezzahra Chakik, M. Kaddami, and M. Mikou, “Effect of operating parameters on hydrogen production by electrolysis of water,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25550–25557, 2017, doi: 10.1016/j.ijhydene.2017.07.015.[17] F. Gutiérrez-Martín, L. Amodio, and M. Pagano, “Hydrogen production by water electrolysis and off-grid solar PV,” Int. J. Hydrogen Energy, vol. 46, no. 57, pp. 29038–29048, 2021, doi: 10.1016/j.ijhydene.2020.09.098.
期刊介绍:
IJASE is a journal which publishes original articles on research and development in the fields of applied science and engineering. Topics of interest include, but are not limited to: - Applied mathematics - Biochemical engineering - Chemical engineering - Civil engineering - Computer engineering and software - Electrical/electronic engineering - Environmental engineering - Industrial engineering and ergonomics - Mechanical engineering.