基于随机优化和混合神经网络/有限元分析方法的大规模并行结构设计

Rong C. Shieh
{"title":"基于随机优化和混合神经网络/有限元分析方法的大规模并行结构设计","authors":"Rong C. Shieh","doi":"10.1016/0956-0521(94)90026-4","DOIUrl":null,"url":null,"abstract":"<div><p>The title study is performed on the massively parallel processing (MPP) environment of Connection Machine (CM) computers using truss structural sizing design problems as example design problems. In this design optimization procedure, only the displacement solution is replaced by that based on neural net technology (under a given set of cross-sectional size parameters (e.g., areas) in the MPP finite element structural reanalysis). This structural reanalysis procedure, together with a vastly improved and parallelized version of the integral global optimization (IGO) stochastic algorithm, IIGO, forms the present MPP structural design methodology. In addition, a procedure to correct the final optimal design for constraint violation or too-conservatively satisfied constraint condition caused by inaccuracy of the NN (neural network) analysis model is also formulated. Evaluation of the numerical performance of the developed computational algorithm set, capability, and strategy is made, primarily on the Connection Machine CM-2 model computer by performing three neural-network-based truss structural reanalysis/minimum weight design problems.</p></div>","PeriodicalId":100325,"journal":{"name":"Computing Systems in Engineering","volume":"5 4","pages":"Pages 455-467"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-0521(94)90026-4","citationCount":"16","resultStr":"{\"title\":\"Massively parallel structural design using stochastic optimization and mixed neuralnet/finite element analysis methods\",\"authors\":\"Rong C. Shieh\",\"doi\":\"10.1016/0956-0521(94)90026-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The title study is performed on the massively parallel processing (MPP) environment of Connection Machine (CM) computers using truss structural sizing design problems as example design problems. In this design optimization procedure, only the displacement solution is replaced by that based on neural net technology (under a given set of cross-sectional size parameters (e.g., areas) in the MPP finite element structural reanalysis). This structural reanalysis procedure, together with a vastly improved and parallelized version of the integral global optimization (IGO) stochastic algorithm, IIGO, forms the present MPP structural design methodology. In addition, a procedure to correct the final optimal design for constraint violation or too-conservatively satisfied constraint condition caused by inaccuracy of the NN (neural network) analysis model is also formulated. Evaluation of the numerical performance of the developed computational algorithm set, capability, and strategy is made, primarily on the Connection Machine CM-2 model computer by performing three neural-network-based truss structural reanalysis/minimum weight design problems.</p></div>\",\"PeriodicalId\":100325,\"journal\":{\"name\":\"Computing Systems in Engineering\",\"volume\":\"5 4\",\"pages\":\"Pages 455-467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-0521(94)90026-4\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing Systems in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0956052194900264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Systems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956052194900264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文以桁架结构尺寸设计问题为例,在连接机(CM)计算机的大规模并行处理(MPP)环境下进行了研究。在此设计优化过程中,仅将位移解替换为基于神经网络技术的解(在MPP有限元结构再分析中给定截面尺寸参数(如面积)下)。这种结构再分析程序,连同一个大大改进和并行的整体优化随机算法,IIGO,形成了目前的MPP结构设计方法。此外,还给出了神经网络分析模型不准确导致的约束违反或约束条件过于保守满足的最终优化设计的修正过程。通过执行三个基于神经网络的桁架结构再分析/最小重量设计问题,主要在Connection Machine CM-2模型计算机上对所开发的计算算法集、能力和策略的数值性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massively parallel structural design using stochastic optimization and mixed neuralnet/finite element analysis methods

The title study is performed on the massively parallel processing (MPP) environment of Connection Machine (CM) computers using truss structural sizing design problems as example design problems. In this design optimization procedure, only the displacement solution is replaced by that based on neural net technology (under a given set of cross-sectional size parameters (e.g., areas) in the MPP finite element structural reanalysis). This structural reanalysis procedure, together with a vastly improved and parallelized version of the integral global optimization (IGO) stochastic algorithm, IIGO, forms the present MPP structural design methodology. In addition, a procedure to correct the final optimal design for constraint violation or too-conservatively satisfied constraint condition caused by inaccuracy of the NN (neural network) analysis model is also formulated. Evaluation of the numerical performance of the developed computational algorithm set, capability, and strategy is made, primarily on the Connection Machine CM-2 model computer by performing three neural-network-based truss structural reanalysis/minimum weight design problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信