基于实例的冗余特征检测的监督解决方案

Xue-Qiang Zeng, Guozheng Li
{"title":"基于实例的冗余特征检测的监督解决方案","authors":"Xue-Qiang Zeng, Guozheng Li","doi":"10.1109/BIBMW.2012.6470320","DOIUrl":null,"url":null,"abstract":"As a high dimensional problem, analysis of microarray data sets is a challenging task, where many weakly relevant or redundant features hurt generalization performance of classifiers. The previous works used redundant feature detection methods to select discriminative compact gene set, which only considered the relationship among features, not the redundancy of classification ability among features. Here, we propose a novel algorithm named RESI (Redundant fEature Selection depending on Instance), which considers label information in the measure of feature subset redundancy. Experimental results on benchmark data sets show that RESI performs better than the previous state-of-arts algorithms on redundant feature selection methods like mRMR.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A supervised solution for redundant feature detection depending on instances\",\"authors\":\"Xue-Qiang Zeng, Guozheng Li\",\"doi\":\"10.1109/BIBMW.2012.6470320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a high dimensional problem, analysis of microarray data sets is a challenging task, where many weakly relevant or redundant features hurt generalization performance of classifiers. The previous works used redundant feature detection methods to select discriminative compact gene set, which only considered the relationship among features, not the redundancy of classification ability among features. Here, we propose a novel algorithm named RESI (Redundant fEature Selection depending on Instance), which considers label information in the measure of feature subset redundancy. Experimental results on benchmark data sets show that RESI performs better than the previous state-of-arts algorithms on redundant feature selection methods like mRMR.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为一个高维问题,微阵列数据集的分析是一项具有挑战性的任务,其中许多弱相关或冗余的特征会影响分类器的泛化性能。以往的研究采用冗余特征检测方法选择判别紧凑基因集,只考虑特征之间的关系,没有考虑特征之间分类能力的冗余性。本文提出了一种基于实例的冗余特征选择(RESI)算法,该算法在特征子集冗余度度量中考虑了标签信息。在基准数据集上的实验结果表明,RESI算法在mRMR等冗余特征选择方法上的表现优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A supervised solution for redundant feature detection depending on instances
As a high dimensional problem, analysis of microarray data sets is a challenging task, where many weakly relevant or redundant features hurt generalization performance of classifiers. The previous works used redundant feature detection methods to select discriminative compact gene set, which only considered the relationship among features, not the redundancy of classification ability among features. Here, we propose a novel algorithm named RESI (Redundant fEature Selection depending on Instance), which considers label information in the measure of feature subset redundancy. Experimental results on benchmark data sets show that RESI performs better than the previous state-of-arts algorithms on redundant feature selection methods like mRMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信