基于C - log -光滑子空间插值的多源域自适应

Jorge Batista, K. Krakowski, Luís Machado, P. Martins, F. Leite
{"title":"基于C - log -光滑子空间插值的多源域自适应","authors":"Jorge Batista, K. Krakowski, Luís Machado, P. Martins, F. Leite","doi":"10.1109/ICIP.2016.7532879","DOIUrl":null,"url":null,"abstract":"Manifold-based domain adaptation algorithms are receiving increasing attention in computer vision to model distribution shifts between source and target domain. In contrast to early works, that mainly explore intermediate subspaces along geodesics, in this work we propose to interpolate subspaces through C1-smooth curves on the Grassmann manifold. The new methodis based on the geometric Casteljau algorithm that is used to generate smooth interpolating polynomial curves on non-euclidean spaces and can be extended to generate polynomial splines that interpolate a given set of data on the Grassmann manifold. To evaluate the usefulness of the proposed interpolating curves on vision related problems, several experiments were conducted. We show the advantage of using smooth subspaces interpolation in multi-source unsupervised domain adaptation problems and in object recognition problems across datasets.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"2846-2850"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-source domain adaptation using C⁁1-smooth subspaces interpolation\",\"authors\":\"Jorge Batista, K. Krakowski, Luís Machado, P. Martins, F. Leite\",\"doi\":\"10.1109/ICIP.2016.7532879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manifold-based domain adaptation algorithms are receiving increasing attention in computer vision to model distribution shifts between source and target domain. In contrast to early works, that mainly explore intermediate subspaces along geodesics, in this work we propose to interpolate subspaces through C1-smooth curves on the Grassmann manifold. The new methodis based on the geometric Casteljau algorithm that is used to generate smooth interpolating polynomial curves on non-euclidean spaces and can be extended to generate polynomial splines that interpolate a given set of data on the Grassmann manifold. To evaluate the usefulness of the proposed interpolating curves on vision related problems, several experiments were conducted. We show the advantage of using smooth subspaces interpolation in multi-source unsupervised domain adaptation problems and in object recognition problems across datasets.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"2846-2850\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于流形的域自适应算法用于模拟源域和目标域之间的分布变化,在计算机视觉领域受到越来越多的关注。与早期主要沿着测地线探索中间子空间的工作相反,在这项工作中,我们提出通过c1 -光滑曲线在Grassmann流形上插值子空间。该方法基于几何Casteljau算法,该算法用于在非欧几里德空间上生成光滑的插值多项式曲线,并可扩展到生成多项式样条,在Grassmann流形上对给定数据集进行插值。为了评估所提出的插值曲线在视觉相关问题上的有效性,进行了几个实验。我们展示了在多源无监督域自适应问题和跨数据集的目标识别问题中使用光滑子空间插值的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-source domain adaptation using C⁁1-smooth subspaces interpolation
Manifold-based domain adaptation algorithms are receiving increasing attention in computer vision to model distribution shifts between source and target domain. In contrast to early works, that mainly explore intermediate subspaces along geodesics, in this work we propose to interpolate subspaces through C1-smooth curves on the Grassmann manifold. The new methodis based on the geometric Casteljau algorithm that is used to generate smooth interpolating polynomial curves on non-euclidean spaces and can be extended to generate polynomial splines that interpolate a given set of data on the Grassmann manifold. To evaluate the usefulness of the proposed interpolating curves on vision related problems, several experiments were conducted. We show the advantage of using smooth subspaces interpolation in multi-source unsupervised domain adaptation problems and in object recognition problems across datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信