事件序列预测中的不确定性和可选性可视化

Shunan Guo, F. Du, Sana Malik, Eunyee Koh, Sungchul Kim, Zhicheng Liu, Donghyun Kim, H. Zha, Nan Cao
{"title":"事件序列预测中的不确定性和可选性可视化","authors":"Shunan Guo, F. Du, Sana Malik, Eunyee Koh, Sungchul Kim, Zhicheng Liu, Donghyun Kim, H. Zha, Nan Cao","doi":"10.1145/3290605.3300803","DOIUrl":null,"url":null,"abstract":"Data analysts apply machine learning and statistical methods to timestamped event sequences to tackle various problems but face unique challenges when interpreting the results. Especially in event sequence prediction, it is difficult to convey uncertainty and possible alternative paths or outcomes. In this work, informed by interviews with five machine learning practitioners, we iteratively designed a novel visualization for exploring event sequence predictions of multiple records where users are able to review the most probable predictions and possible alternatives alongside uncertainty information. Through a controlled study with 18 participants, we found that users are more confident in making decisions when alternative predictions are displayed and they consider the alternatives more when deciding between two options with similar top predictions.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Visualizing Uncertainty and Alternatives in Event Sequence Predictions\",\"authors\":\"Shunan Guo, F. Du, Sana Malik, Eunyee Koh, Sungchul Kim, Zhicheng Liu, Donghyun Kim, H. Zha, Nan Cao\",\"doi\":\"10.1145/3290605.3300803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analysts apply machine learning and statistical methods to timestamped event sequences to tackle various problems but face unique challenges when interpreting the results. Especially in event sequence prediction, it is difficult to convey uncertainty and possible alternative paths or outcomes. In this work, informed by interviews with five machine learning practitioners, we iteratively designed a novel visualization for exploring event sequence predictions of multiple records where users are able to review the most probable predictions and possible alternatives alongside uncertainty information. Through a controlled study with 18 participants, we found that users are more confident in making decisions when alternative predictions are displayed and they consider the alternatives more when deciding between two options with similar top predictions.\",\"PeriodicalId\":20454,\"journal\":{\"name\":\"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3290605.3300803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

数据分析师将机器学习和统计方法应用于时间戳事件序列来解决各种问题,但在解释结果时面临独特的挑战。特别是在事件序列预测中,很难传达不确定性和可能的替代路径或结果。在这项工作中,通过对五位机器学习从业者的采访,我们迭代地设计了一种新颖的可视化方法,用于探索多个记录的事件序列预测,用户可以在其中查看最可能的预测和可能的替代方案以及不确定性信息。通过一项有18名参与者的对照研究,我们发现,当显示替代预测时,用户在做出决策时更有信心,当在两个具有相似顶级预测的选项之间做出决定时,他们会更多地考虑替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Uncertainty and Alternatives in Event Sequence Predictions
Data analysts apply machine learning and statistical methods to timestamped event sequences to tackle various problems but face unique challenges when interpreting the results. Especially in event sequence prediction, it is difficult to convey uncertainty and possible alternative paths or outcomes. In this work, informed by interviews with five machine learning practitioners, we iteratively designed a novel visualization for exploring event sequence predictions of multiple records where users are able to review the most probable predictions and possible alternatives alongside uncertainty information. Through a controlled study with 18 participants, we found that users are more confident in making decisions when alternative predictions are displayed and they consider the alternatives more when deciding between two options with similar top predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信