Shunan Guo, F. Du, Sana Malik, Eunyee Koh, Sungchul Kim, Zhicheng Liu, Donghyun Kim, H. Zha, Nan Cao
{"title":"事件序列预测中的不确定性和可选性可视化","authors":"Shunan Guo, F. Du, Sana Malik, Eunyee Koh, Sungchul Kim, Zhicheng Liu, Donghyun Kim, H. Zha, Nan Cao","doi":"10.1145/3290605.3300803","DOIUrl":null,"url":null,"abstract":"Data analysts apply machine learning and statistical methods to timestamped event sequences to tackle various problems but face unique challenges when interpreting the results. Especially in event sequence prediction, it is difficult to convey uncertainty and possible alternative paths or outcomes. In this work, informed by interviews with five machine learning practitioners, we iteratively designed a novel visualization for exploring event sequence predictions of multiple records where users are able to review the most probable predictions and possible alternatives alongside uncertainty information. Through a controlled study with 18 participants, we found that users are more confident in making decisions when alternative predictions are displayed and they consider the alternatives more when deciding between two options with similar top predictions.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Visualizing Uncertainty and Alternatives in Event Sequence Predictions\",\"authors\":\"Shunan Guo, F. Du, Sana Malik, Eunyee Koh, Sungchul Kim, Zhicheng Liu, Donghyun Kim, H. Zha, Nan Cao\",\"doi\":\"10.1145/3290605.3300803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analysts apply machine learning and statistical methods to timestamped event sequences to tackle various problems but face unique challenges when interpreting the results. Especially in event sequence prediction, it is difficult to convey uncertainty and possible alternative paths or outcomes. In this work, informed by interviews with five machine learning practitioners, we iteratively designed a novel visualization for exploring event sequence predictions of multiple records where users are able to review the most probable predictions and possible alternatives alongside uncertainty information. Through a controlled study with 18 participants, we found that users are more confident in making decisions when alternative predictions are displayed and they consider the alternatives more when deciding between two options with similar top predictions.\",\"PeriodicalId\":20454,\"journal\":{\"name\":\"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3290605.3300803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualizing Uncertainty and Alternatives in Event Sequence Predictions
Data analysts apply machine learning and statistical methods to timestamped event sequences to tackle various problems but face unique challenges when interpreting the results. Especially in event sequence prediction, it is difficult to convey uncertainty and possible alternative paths or outcomes. In this work, informed by interviews with five machine learning practitioners, we iteratively designed a novel visualization for exploring event sequence predictions of multiple records where users are able to review the most probable predictions and possible alternatives alongside uncertainty information. Through a controlled study with 18 participants, we found that users are more confident in making decisions when alternative predictions are displayed and they consider the alternatives more when deciding between two options with similar top predictions.