{"title":"球面等方参数化拉伸能量最小化的基本理论及r -线性收敛","authors":"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin","doi":"10.1515/jnma-2022-0072","DOIUrl":null,"url":null,"abstract":"Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization\",\"authors\":\"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin\",\"doi\":\"10.1515/jnma-2022-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2022-0072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2022-0072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization
Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.