少查询:预测下一代主动搜索和推荐引擎的任务重复

Yang Song, Qi Guo
{"title":"少查询:预测下一代主动搜索和推荐引擎的任务重复","authors":"Yang Song, Qi Guo","doi":"10.1145/2872427.2883020","DOIUrl":null,"url":null,"abstract":"Web search has been a reactive scenario for decades which often starts by users issuing queries. By studying the user behavior in search engine logs, we have discovered that many of the search tasks such as stock-price checking, news reading exhibit strong repeated patterns from day to day. In addition, users exhibit even stronger repetition on mobile devices. This provides us chances to perform proactive recommendations without user issuing queries. In this work, we aim at discovering and characterizing these types of tasks so that we can automatically predict when and what types of tasks will be repeated by the users in the future, through analyzing search logs from a commercial Web search engine and user interaction logs from a mobile App that offers proactive recommendations. We first introduce a set of novel features that can accurately capture task repetition. We then propose a novel deep learning framework that learns user preferences and makes automatic predictions. Our framework is capable of learning both user-independent global models as well as catering personalized models via model adaptation. The model we developed significantly outperforms other state-of-the-art predictive models by large margins. We also demonstrate the power of our model and features through an application to improve the recommendation quality of the mobile App. Results indicate a significant relevance improvement over the current production system.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Query-Less: Predicting Task Repetition for NextGen Proactive Search and Recommendation Engines\",\"authors\":\"Yang Song, Qi Guo\",\"doi\":\"10.1145/2872427.2883020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web search has been a reactive scenario for decades which often starts by users issuing queries. By studying the user behavior in search engine logs, we have discovered that many of the search tasks such as stock-price checking, news reading exhibit strong repeated patterns from day to day. In addition, users exhibit even stronger repetition on mobile devices. This provides us chances to perform proactive recommendations without user issuing queries. In this work, we aim at discovering and characterizing these types of tasks so that we can automatically predict when and what types of tasks will be repeated by the users in the future, through analyzing search logs from a commercial Web search engine and user interaction logs from a mobile App that offers proactive recommendations. We first introduce a set of novel features that can accurately capture task repetition. We then propose a novel deep learning framework that learns user preferences and makes automatic predictions. Our framework is capable of learning both user-independent global models as well as catering personalized models via model adaptation. The model we developed significantly outperforms other state-of-the-art predictive models by large margins. We also demonstrate the power of our model and features through an application to improve the recommendation quality of the mobile App. Results indicate a significant relevance improvement over the current production system.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

几十年来,网络搜索一直是一个被动的场景,通常由用户发出查询开始。通过研究搜索引擎日志中的用户行为,我们发现许多搜索任务,如股票价格查询、新闻阅读等,每天都表现出强烈的重复模式。此外,用户在移动设备上表现出更强的重复。这为我们提供了执行主动推荐的机会,而无需用户发出查询。在这项工作中,我们的目标是发现和描述这些类型的任务,以便我们可以通过分析来自商业Web搜索引擎的搜索日志和来自提供主动推荐的移动应用程序的用户交互日志,自动预测用户将来何时以及哪些类型的任务将被重复。我们首先介绍了一组新颖的特征,可以准确地捕捉任务重复。然后,我们提出了一种新的深度学习框架,可以学习用户偏好并进行自动预测。我们的框架既可以学习独立于用户的全局模型,也可以通过模型适应适应个性化模型。我们开发的模型明显优于其他最先进的预测模型。我们还通过一个应用程序展示了我们的模型和功能的力量,以提高移动应用程序的推荐质量。结果表明,与当前的生产系统相比,我们有了显著的相关性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query-Less: Predicting Task Repetition for NextGen Proactive Search and Recommendation Engines
Web search has been a reactive scenario for decades which often starts by users issuing queries. By studying the user behavior in search engine logs, we have discovered that many of the search tasks such as stock-price checking, news reading exhibit strong repeated patterns from day to day. In addition, users exhibit even stronger repetition on mobile devices. This provides us chances to perform proactive recommendations without user issuing queries. In this work, we aim at discovering and characterizing these types of tasks so that we can automatically predict when and what types of tasks will be repeated by the users in the future, through analyzing search logs from a commercial Web search engine and user interaction logs from a mobile App that offers proactive recommendations. We first introduce a set of novel features that can accurately capture task repetition. We then propose a novel deep learning framework that learns user preferences and makes automatic predictions. Our framework is capable of learning both user-independent global models as well as catering personalized models via model adaptation. The model we developed significantly outperforms other state-of-the-art predictive models by large margins. We also demonstrate the power of our model and features through an application to improve the recommendation quality of the mobile App. Results indicate a significant relevance improvement over the current production system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信