亚丁湾中尺度涡旋的生命周期

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Mathieu Morvan, P. L’Hégaret, Charly de Marez, X. Carton, Stéphanie Corréard, R. Baraille
{"title":"亚丁湾中尺度涡旋的生命周期","authors":"Mathieu Morvan, P. L’Hégaret, Charly de Marez, X. Carton, Stéphanie Corréard, R. Baraille","doi":"10.1080/03091929.2019.1708348","DOIUrl":null,"url":null,"abstract":"The Red Sea Water is a warm and salty water produced in the Red Sea by evaporation induced by strong solar radiation. This dense water mass exits the Red Sea through the Strait of Bab El Mandeb, and enters the Gulf of Aden as a density current between 400 and 1000 metre depth. In the Gulf of Aden, in situ and satellites observations have shown the impact of the deeply reaching eddies dominating the mesoscale dynamics, on the spreading of the Red Sea Water. In this paper, we study the life cycle of these mesoscale eddies in the Gulf of Aden by using a regional primitive equation model at mesoscale resolution, and an eddy-tracking algorithm. The mesoscale anticyclonic eddies are formed at the mouth of the Gulf of Aden, and subsequently drift westward into the gulf. Mesoscale anticyclones are long-lived compared to the cyclones. The cyclones result from the interaction of anticyclones with the coast and the sloping topography. The wind stress, the bathymetry and the surrounding eddy field drive the life cycle of eddies. Finally, Kelvin and internal waves are triggered along the northern and southern coasts.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"389 1","pages":"631 - 649"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Life cycle of mesoscale eddies in the Gulf of Aden\",\"authors\":\"Mathieu Morvan, P. L’Hégaret, Charly de Marez, X. Carton, Stéphanie Corréard, R. Baraille\",\"doi\":\"10.1080/03091929.2019.1708348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Red Sea Water is a warm and salty water produced in the Red Sea by evaporation induced by strong solar radiation. This dense water mass exits the Red Sea through the Strait of Bab El Mandeb, and enters the Gulf of Aden as a density current between 400 and 1000 metre depth. In the Gulf of Aden, in situ and satellites observations have shown the impact of the deeply reaching eddies dominating the mesoscale dynamics, on the spreading of the Red Sea Water. In this paper, we study the life cycle of these mesoscale eddies in the Gulf of Aden by using a regional primitive equation model at mesoscale resolution, and an eddy-tracking algorithm. The mesoscale anticyclonic eddies are formed at the mouth of the Gulf of Aden, and subsequently drift westward into the gulf. Mesoscale anticyclones are long-lived compared to the cyclones. The cyclones result from the interaction of anticyclones with the coast and the sloping topography. The wind stress, the bathymetry and the surrounding eddy field drive the life cycle of eddies. Finally, Kelvin and internal waves are triggered along the northern and southern coasts.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"389 1\",\"pages\":\"631 - 649\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2019.1708348\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2019.1708348","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8

摘要

红海水是由强烈的太阳辐射引起的蒸发在红海中产生的一种温暖的咸水。这种密集的水团通过曼德海峡从红海流出,并以密度流的形式进入亚丁湾,深度在400到1000米之间。在亚丁湾,实地观测和卫星观测表明,影响深远的涡流主导着中尺度动力学,对红海水的扩散产生了影响。本文采用中尺度分辨率的区域原始方程模型和涡旋跟踪算法研究了亚丁湾这些中尺度涡旋的生命周期。中尺度反气旋涡旋在亚丁湾入口处形成,随后向西漂移进入亚丁湾。中尺度反气旋比气旋寿命长。气旋是反气旋与海岸和斜坡地形相互作用的结果。风应力、水深和周围涡场驱动涡的生命周期。最后,开尔文波和内波沿着南北海岸被触发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life cycle of mesoscale eddies in the Gulf of Aden
The Red Sea Water is a warm and salty water produced in the Red Sea by evaporation induced by strong solar radiation. This dense water mass exits the Red Sea through the Strait of Bab El Mandeb, and enters the Gulf of Aden as a density current between 400 and 1000 metre depth. In the Gulf of Aden, in situ and satellites observations have shown the impact of the deeply reaching eddies dominating the mesoscale dynamics, on the spreading of the Red Sea Water. In this paper, we study the life cycle of these mesoscale eddies in the Gulf of Aden by using a regional primitive equation model at mesoscale resolution, and an eddy-tracking algorithm. The mesoscale anticyclonic eddies are formed at the mouth of the Gulf of Aden, and subsequently drift westward into the gulf. Mesoscale anticyclones are long-lived compared to the cyclones. The cyclones result from the interaction of anticyclones with the coast and the sloping topography. The wind stress, the bathymetry and the surrounding eddy field drive the life cycle of eddies. Finally, Kelvin and internal waves are triggered along the northern and southern coasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信