将重型ML模型带到边缘的不太容易的任务:性能瓦特的角度

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lucas Pereira, B. Guterres, Kauê Sbrissa, Amanda Mendes, Francisca Vermeulen, L. Lain, Marié Smith, Javier Martinez, Paulo L. J. Drews-Jr, Nelson Duarte, Vinicus Oliveira, S. Botelho, M. Pias
{"title":"将重型ML模型带到边缘的不太容易的任务:性能瓦特的角度","authors":"Lucas Pereira, B. Guterres, Kauê Sbrissa, Amanda Mendes, Francisca Vermeulen, L. Lain, Marié Smith, Javier Martinez, Paulo L. J. Drews-Jr, Nelson Duarte, Vinicus Oliveira, S. Botelho, M. Pias","doi":"10.1145/3555776.3577742","DOIUrl":null,"url":null,"abstract":"Edge computing is a new development paradigm that brings computational power to the network edge through novel intelligent end-user services. It allows latency-sensitive applications to be placed where the data is created, thus reducing communication overhead and improving security, mobility and power consumption. There is a plethora of applications benefiting from this type of processing. Of particular interest is emerging edge-based image classification at the microscopic level. The scale and magnitude of the objects to segment, detect and classify are very challenging, with data collected using order of magnitude in magnification. The required data processing is intense, and the wish list of end-users in this space includes tools and solutions that fit into a desk-based device. Taking heavy-lift classification models initially built in the cloud to desk-based image analysis devices is a hard job for application developers. This work looks at the performance limitations and energy consumption footprint in embedding deep learning classification models in a representative edge computing device. Particularly, the dataset and heavy-lift models explored in the case study are phytoplankton images to detect Harmful Algae Blooms (HAB) in aquaculture at early stages. The work takes a deep learning model trained for phytoplankton classification and deploys it at the edge. The embedded model, deployed in a base form alongside optimised options, is submitted to a series of system stress experiments. The performance and power consumption profiling help understand system limitations and their impact on the microscopic grade image classification task.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"9 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The not-so-easy task of taking heavy-lift ML models to the edge: a performance-watt perspective\",\"authors\":\"Lucas Pereira, B. Guterres, Kauê Sbrissa, Amanda Mendes, Francisca Vermeulen, L. Lain, Marié Smith, Javier Martinez, Paulo L. J. Drews-Jr, Nelson Duarte, Vinicus Oliveira, S. Botelho, M. Pias\",\"doi\":\"10.1145/3555776.3577742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing is a new development paradigm that brings computational power to the network edge through novel intelligent end-user services. It allows latency-sensitive applications to be placed where the data is created, thus reducing communication overhead and improving security, mobility and power consumption. There is a plethora of applications benefiting from this type of processing. Of particular interest is emerging edge-based image classification at the microscopic level. The scale and magnitude of the objects to segment, detect and classify are very challenging, with data collected using order of magnitude in magnification. The required data processing is intense, and the wish list of end-users in this space includes tools and solutions that fit into a desk-based device. Taking heavy-lift classification models initially built in the cloud to desk-based image analysis devices is a hard job for application developers. This work looks at the performance limitations and energy consumption footprint in embedding deep learning classification models in a representative edge computing device. Particularly, the dataset and heavy-lift models explored in the case study are phytoplankton images to detect Harmful Algae Blooms (HAB) in aquaculture at early stages. The work takes a deep learning model trained for phytoplankton classification and deploys it at the edge. The embedded model, deployed in a base form alongside optimised options, is submitted to a series of system stress experiments. The performance and power consumption profiling help understand system limitations and their impact on the microscopic grade image classification task.\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

边缘计算是一种新的发展模式,通过新颖的智能终端用户服务将计算能力带到网络边缘。它允许将对延迟敏感的应用程序放在创建数据的位置,从而减少通信开销,提高安全性、移动性和功耗。有大量的应用程序受益于这种类型的处理。特别令人感兴趣的是在微观水平上新兴的基于边缘的图像分类。要分割、检测和分类的物体的规模和大小是非常具有挑战性的,数据收集使用的是数量级的放大。所需的数据处理非常密集,该领域的最终用户的愿望清单包括适合基于桌面的设备的工具和解决方案。对于应用程序开发人员来说,将最初在云中构建的重型分类模型应用到基于桌面的图像分析设备上是一项艰巨的工作。这项工作着眼于在代表性边缘计算设备中嵌入深度学习分类模型的性能限制和能耗足迹。特别是,案例研究中探索的数据集和重型模型是浮游植物图像,用于在早期阶段检测水产养殖中的有害藻华(HAB)。这项工作采用了一个经过浮游植物分类训练的深度学习模型,并将其部署在边缘。嵌入式模型以基本形式与优化选项一起部署,并提交给一系列系统压力实验。性能和功耗分析有助于了解系统限制及其对微观级图像分类任务的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The not-so-easy task of taking heavy-lift ML models to the edge: a performance-watt perspective
Edge computing is a new development paradigm that brings computational power to the network edge through novel intelligent end-user services. It allows latency-sensitive applications to be placed where the data is created, thus reducing communication overhead and improving security, mobility and power consumption. There is a plethora of applications benefiting from this type of processing. Of particular interest is emerging edge-based image classification at the microscopic level. The scale and magnitude of the objects to segment, detect and classify are very challenging, with data collected using order of magnitude in magnification. The required data processing is intense, and the wish list of end-users in this space includes tools and solutions that fit into a desk-based device. Taking heavy-lift classification models initially built in the cloud to desk-based image analysis devices is a hard job for application developers. This work looks at the performance limitations and energy consumption footprint in embedding deep learning classification models in a representative edge computing device. Particularly, the dataset and heavy-lift models explored in the case study are phytoplankton images to detect Harmful Algae Blooms (HAB) in aquaculture at early stages. The work takes a deep learning model trained for phytoplankton classification and deploys it at the edge. The embedded model, deployed in a base form alongside optimised options, is submitted to a series of system stress experiments. The performance and power consumption profiling help understand system limitations and their impact on the microscopic grade image classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信