Michal Batko, Jan Botorek, Petra Budíková, P. Zezula
{"title":"基于内容的注释和分类框架:一种通用的多用途方法","authors":"Michal Batko, Jan Botorek, Petra Budíková, P. Zezula","doi":"10.1145/2513591.2513651","DOIUrl":null,"url":null,"abstract":"Unprecedented amounts of digital data are becoming available nowadays, but frequently the data lack some semantic information necessary to effectively organize these resources. For images in particular, textual annotations that represent the semantics are highly desirable. Only a small percentage of images is created with reliable annotations, therefore a lot of effort is being invested into automatic image annotation. In this paper, we address the annotation problem from a general perspective and introduce a new annotation model that is applicable to many text assignment problems. We also provide experimental results from several implemented instances of our model.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"1 1","pages":"58-67"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Content-based annotation and classification framework: a general multi-purpose approach\",\"authors\":\"Michal Batko, Jan Botorek, Petra Budíková, P. Zezula\",\"doi\":\"10.1145/2513591.2513651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unprecedented amounts of digital data are becoming available nowadays, but frequently the data lack some semantic information necessary to effectively organize these resources. For images in particular, textual annotations that represent the semantics are highly desirable. Only a small percentage of images is created with reliable annotations, therefore a lot of effort is being invested into automatic image annotation. In this paper, we address the annotation problem from a general perspective and introduce a new annotation model that is applicable to many text assignment problems. We also provide experimental results from several implemented instances of our model.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"1 1\",\"pages\":\"58-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513591.2513651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513591.2513651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-based annotation and classification framework: a general multi-purpose approach
Unprecedented amounts of digital data are becoming available nowadays, but frequently the data lack some semantic information necessary to effectively organize these resources. For images in particular, textual annotations that represent the semantics are highly desirable. Only a small percentage of images is created with reliable annotations, therefore a lot of effort is being invested into automatic image annotation. In this paper, we address the annotation problem from a general perspective and introduce a new annotation model that is applicable to many text assignment problems. We also provide experimental results from several implemented instances of our model.