具有作动器约束的高超声速飞行器自适应神经网络控制

Aixue Wang, Shuquan Wang
{"title":"具有作动器约束的高超声速飞行器自适应神经网络控制","authors":"Aixue Wang, Shuquan Wang","doi":"10.1109/AUTEEE50969.2020.9315589","DOIUrl":null,"url":null,"abstract":"An adaptive neural network controller based on the back-stepping is developed for a generic hypersonic flight vehicle. The controller addresses two main problems, including model uncertainty and input saturations. First, the longitudinal dynamic model is transformed into an altitude subsystem and a velocity subsystem with the strict feedback form. Then, the combination of the adaptive neural network controller via the back-stepping method and command filter is utilized to track the altitude and velocity command. The stability analysis of the closed-loop system is proved based on Lyapunov’s stability theorem. Simulation results display that the proposed controller is robust in terms of parametric uncertainty and meets the performance requirements with input saturation.","PeriodicalId":6767,"journal":{"name":"2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)","volume":"20 1","pages":"171-175"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive neural network control of hypersonic flight vehicle with actuator constraints\",\"authors\":\"Aixue Wang, Shuquan Wang\",\"doi\":\"10.1109/AUTEEE50969.2020.9315589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive neural network controller based on the back-stepping is developed for a generic hypersonic flight vehicle. The controller addresses two main problems, including model uncertainty and input saturations. First, the longitudinal dynamic model is transformed into an altitude subsystem and a velocity subsystem with the strict feedback form. Then, the combination of the adaptive neural network controller via the back-stepping method and command filter is utilized to track the altitude and velocity command. The stability analysis of the closed-loop system is proved based on Lyapunov’s stability theorem. Simulation results display that the proposed controller is robust in terms of parametric uncertainty and meets the performance requirements with input saturation.\",\"PeriodicalId\":6767,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)\",\"volume\":\"20 1\",\"pages\":\"171-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEEE50969.2020.9315589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEEE50969.2020.9315589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对某型高超声速飞行器,研制了一种基于反步的自适应神经网络控制器。该控制器解决了两个主要问题,包括模型不确定性和输入饱和。首先,将纵向动力学模型转化为高度分系统和速度分系统,并采用严格的反馈形式;然后,利用反步法自适应神经网络控制器和指令滤波相结合的方法对高度和速度指令进行跟踪。利用李雅普诺夫稳定性定理证明了闭环系统的稳定性分析。仿真结果表明,该控制器在参数不确定性方面具有鲁棒性,满足输入饱和条件下的性能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neural network control of hypersonic flight vehicle with actuator constraints
An adaptive neural network controller based on the back-stepping is developed for a generic hypersonic flight vehicle. The controller addresses two main problems, including model uncertainty and input saturations. First, the longitudinal dynamic model is transformed into an altitude subsystem and a velocity subsystem with the strict feedback form. Then, the combination of the adaptive neural network controller via the back-stepping method and command filter is utilized to track the altitude and velocity command. The stability analysis of the closed-loop system is proved based on Lyapunov’s stability theorem. Simulation results display that the proposed controller is robust in terms of parametric uncertainty and meets the performance requirements with input saturation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信