{"title":"基于Wolfe线搜索的混合共轭梯度- bfgs方法","authors":"Khelladi Samia, Benterki Djamel","doi":"10.24193/subbmath.2022.4.14","DOIUrl":null,"url":null,"abstract":"\"In this paper, we present some hybrid methods for solving unconstrained optimization problems. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton method of Broyden-Fletcher-Goldfarb-Shanno (CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objective functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS) method with respect to some existing methods.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid conjugate gradient-BFGS methods based on Wolfe line search\",\"authors\":\"Khelladi Samia, Benterki Djamel\",\"doi\":\"10.24193/subbmath.2022.4.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we present some hybrid methods for solving unconstrained optimization problems. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton method of Broyden-Fletcher-Goldfarb-Shanno (CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objective functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS) method with respect to some existing methods.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.4.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.4.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid conjugate gradient-BFGS methods based on Wolfe line search
"In this paper, we present some hybrid methods for solving unconstrained optimization problems. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton method of Broyden-Fletcher-Goldfarb-Shanno (CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objective functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS) method with respect to some existing methods."