串行模块的扩展

G. D'este, Fatma Kaynarca, D. K. Tütüncü
{"title":"串行模块的扩展","authors":"G. D'este, Fatma Kaynarca, D. K. Tütüncü","doi":"10.4171/rsmup/57","DOIUrl":null,"url":null,"abstract":"Let R be any ring and let 0 → A → B → C → 0 be an exact sequence of R-modules which does not split with A and C uniserial. Then either B is indecomposable or B has a decomposition of the form B = B1 ⊕ B2 where B1 and B2 are indecomposable and at least one of them is uniserial. Mathematics Subject Classification (2010).Primary: 16D10; Secondary: 16G20.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"8 1","pages":"73-86"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions of uniserial modules\",\"authors\":\"G. D'este, Fatma Kaynarca, D. K. Tütüncü\",\"doi\":\"10.4171/rsmup/57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be any ring and let 0 → A → B → C → 0 be an exact sequence of R-modules which does not split with A and C uniserial. Then either B is indecomposable or B has a decomposition of the form B = B1 ⊕ B2 where B1 and B2 are indecomposable and at least one of them is uniserial. Mathematics Subject Classification (2010).Primary: 16D10; Secondary: 16G20.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"8 1\",\"pages\":\"73-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设R为任意环,设0→A→B→C→0为不与A、C单列分裂的R模的精确序列。那么要么B是不可分解的,要么B的分解形式为B = B1⊕B2,其中B1和B2是不可分解的,其中至少有一个是单列的。数学学科分类(2010)。主:16 d10;二级:16 20国集团(g20)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions of uniserial modules
Let R be any ring and let 0 → A → B → C → 0 be an exact sequence of R-modules which does not split with A and C uniserial. Then either B is indecomposable or B has a decomposition of the form B = B1 ⊕ B2 where B1 and B2 are indecomposable and at least one of them is uniserial. Mathematics Subject Classification (2010).Primary: 16D10; Secondary: 16G20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信