ZnCr2Se4中低能磁振子的磁场依赖性、各向异性热传导和磁畴的自发弛豫

D. Inosov, Y. Onykiienko, Y. Tymoshenko, A. Akopyan, D. Shukla, N. Prasai, M. Doerr, D. Gorbunov, S. Zherlitsyn, D. Voneshen, M. Boehm, V. Tsurkan, V. Felea, A. Loidl, J. Cohn
{"title":"ZnCr2Se4中低能磁振子的磁场依赖性、各向异性热传导和磁畴的自发弛豫","authors":"D. Inosov, Y. Onykiienko, Y. Tymoshenko, A. Akopyan, D. Shukla, N. Prasai, M. Doerr, D. Gorbunov, S. Zherlitsyn, D. Voneshen, M. Boehm, V. Tsurkan, V. Felea, A. Loidl, J. Cohn","doi":"10.1103/physrevb.102.184431","DOIUrl":null,"url":null,"abstract":"Anisotropic low-temperature properties of the cubic spinel helimagnet ZnCr2Se4 in the single-domain spin-spiral state are investigated by a combination of neutron scattering, thermal conductivity, ultrasound velocity, and dilatometry measurements. In an applied magnetic field, neutron spectroscopy shows a complex and nonmonotonic evolution of the spin-wave spectrum across the quantum-critical point that separates the spin-spiral phase from the field-polarized ferromagnetic phase at high fields. A tiny spin gap of the pseudo-Goldstone magnon mode, observed at wave vectors that are structurally equivalent but orthogonal to the propagation vector of the spin helix, vanishes at this quantum critical point, restoring the cubic symmetry in the magnetic subsystem. The anisotropy imposed by the spin helix has only a minor influence on the lattice structure and sound velocity but has a much stronger effect on the heat conductivities measured parallel and perpendicular to the magnetic propagation vector. The thermal transport is anisotropic at T < 2 K, highly sensitive to an external magnetic field, and likely results directly from magnonic heat conduction. We also report long-time thermal relaxation phenomena, revealed by capacitive dilatometry, which are due to magnetic domain motion related to the destruction of the single-domain magnetic state, initially stabilized in the sample by the application and removal of magnetic field. Our results can be generalized to a broad class of helimagnetic materials in which a discrete lattice symmetry is spontaneously broken by the magnetic order.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetic field dependence of low-energy magnons, anisotropic heat conduction, and spontaneous relaxation of magnetic domains in the cubic helimagnet \\nZnCr2Se4\",\"authors\":\"D. Inosov, Y. Onykiienko, Y. Tymoshenko, A. Akopyan, D. Shukla, N. Prasai, M. Doerr, D. Gorbunov, S. Zherlitsyn, D. Voneshen, M. Boehm, V. Tsurkan, V. Felea, A. Loidl, J. Cohn\",\"doi\":\"10.1103/physrevb.102.184431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anisotropic low-temperature properties of the cubic spinel helimagnet ZnCr2Se4 in the single-domain spin-spiral state are investigated by a combination of neutron scattering, thermal conductivity, ultrasound velocity, and dilatometry measurements. In an applied magnetic field, neutron spectroscopy shows a complex and nonmonotonic evolution of the spin-wave spectrum across the quantum-critical point that separates the spin-spiral phase from the field-polarized ferromagnetic phase at high fields. A tiny spin gap of the pseudo-Goldstone magnon mode, observed at wave vectors that are structurally equivalent but orthogonal to the propagation vector of the spin helix, vanishes at this quantum critical point, restoring the cubic symmetry in the magnetic subsystem. The anisotropy imposed by the spin helix has only a minor influence on the lattice structure and sound velocity but has a much stronger effect on the heat conductivities measured parallel and perpendicular to the magnetic propagation vector. The thermal transport is anisotropic at T < 2 K, highly sensitive to an external magnetic field, and likely results directly from magnonic heat conduction. We also report long-time thermal relaxation phenomena, revealed by capacitive dilatometry, which are due to magnetic domain motion related to the destruction of the single-domain magnetic state, initially stabilized in the sample by the application and removal of magnetic field. Our results can be generalized to a broad class of helimagnetic materials in which a discrete lattice symmetry is spontaneously broken by the magnetic order.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.184431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.184431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用中子散射、热导率、超声速度和膨胀测量相结合的方法研究了立方尖晶石螺旋晶ZnCr2Se4在单畴自旋螺旋态下的各向异性低温特性。在外加磁场中,中子光谱学显示出自旋波谱跨越量子临界点的复杂非单调演化,该临界点将自旋螺旋相与场极化铁磁相分离。伪戈德斯通磁振子模式的微小自旋间隙,在结构等效但与自旋螺旋传播矢量正交的波矢量上观察到,在这个量子临界点上消失,恢复了磁子系统的立方对称。自旋螺旋施加的各向异性对晶格结构和声速的影响很小,但对平行和垂直于磁传播矢量的热导率的影响要大得多。热输运在温度< 2k时是各向异性的,对外部磁场高度敏感,可能是由磁热传导直接导致的。我们还报道了容性膨胀法揭示的长时间热松弛现象,这是由于与单畴磁态破坏有关的磁畴运动,通过施加和去除磁场在样品中最初稳定下来。我们的结果可以推广到一类广泛的磁材料,其中离散晶格对称性被磁序自发地打破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic field dependence of low-energy magnons, anisotropic heat conduction, and spontaneous relaxation of magnetic domains in the cubic helimagnet ZnCr2Se4
Anisotropic low-temperature properties of the cubic spinel helimagnet ZnCr2Se4 in the single-domain spin-spiral state are investigated by a combination of neutron scattering, thermal conductivity, ultrasound velocity, and dilatometry measurements. In an applied magnetic field, neutron spectroscopy shows a complex and nonmonotonic evolution of the spin-wave spectrum across the quantum-critical point that separates the spin-spiral phase from the field-polarized ferromagnetic phase at high fields. A tiny spin gap of the pseudo-Goldstone magnon mode, observed at wave vectors that are structurally equivalent but orthogonal to the propagation vector of the spin helix, vanishes at this quantum critical point, restoring the cubic symmetry in the magnetic subsystem. The anisotropy imposed by the spin helix has only a minor influence on the lattice structure and sound velocity but has a much stronger effect on the heat conductivities measured parallel and perpendicular to the magnetic propagation vector. The thermal transport is anisotropic at T < 2 K, highly sensitive to an external magnetic field, and likely results directly from magnonic heat conduction. We also report long-time thermal relaxation phenomena, revealed by capacitive dilatometry, which are due to magnetic domain motion related to the destruction of the single-domain magnetic state, initially stabilized in the sample by the application and removal of magnetic field. Our results can be generalized to a broad class of helimagnetic materials in which a discrete lattice symmetry is spontaneously broken by the magnetic order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信