M. Węglowski, J. Dworak, S. Dymek, I. Kalemba-Rec, A. Wrona, K. Kustra, M. Lis
{"title":"Ni-Cr-Re等离子喷涂涂层的激光重熔","authors":"M. Węglowski, J. Dworak, S. Dymek, I. Kalemba-Rec, A. Wrona, K. Kustra, M. Lis","doi":"10.37904/metal.2020.3562","DOIUrl":null,"url":null,"abstract":"The plasma spray technology allows spraying a wide variety of materials. Atmospheric plasma spraying (APS) consists in injecting a powder feedstock material in a plasma jet to melt and accelerate the injected particles and spray them onto a substrate. The coating growth is thus realized by the impingement and spreading of sprayed particles. This mechanism of coating formation induces the presence of pores and micro-cracks. In order to eliminate those drawbacks, laser remleting may be used to improve the properties and performances of plasma sprayed coatings. In the present paper, the Ni20%C + 20%Re coating fabricated by plasma spraying on stainless steel substrate were remelted by CO 2 laser, and the effect of laser remelting on microstructure and hardness of plasma sprayed Ni20%Cr + 20%Re coating were studied. The microstructure of plasma sprayed and laser remelted coatings were analyzed using scanning election microscopy (SEM) and energy disperse spectroscopy (EDS). The micro-hardness of coating was measured using micro-hardness tester. The results show that the laser remelted coating becomes much denser moreover, the chemical composition of the coatings becomes homogeneous","PeriodicalId":18449,"journal":{"name":"METAL 2020 Conference Proeedings","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser remelting of Ni-Cr-Re plasma spraying coating\",\"authors\":\"M. Węglowski, J. Dworak, S. Dymek, I. Kalemba-Rec, A. Wrona, K. Kustra, M. Lis\",\"doi\":\"10.37904/metal.2020.3562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plasma spray technology allows spraying a wide variety of materials. Atmospheric plasma spraying (APS) consists in injecting a powder feedstock material in a plasma jet to melt and accelerate the injected particles and spray them onto a substrate. The coating growth is thus realized by the impingement and spreading of sprayed particles. This mechanism of coating formation induces the presence of pores and micro-cracks. In order to eliminate those drawbacks, laser remleting may be used to improve the properties and performances of plasma sprayed coatings. In the present paper, the Ni20%C + 20%Re coating fabricated by plasma spraying on stainless steel substrate were remelted by CO 2 laser, and the effect of laser remelting on microstructure and hardness of plasma sprayed Ni20%Cr + 20%Re coating were studied. The microstructure of plasma sprayed and laser remelted coatings were analyzed using scanning election microscopy (SEM) and energy disperse spectroscopy (EDS). The micro-hardness of coating was measured using micro-hardness tester. The results show that the laser remelted coating becomes much denser moreover, the chemical composition of the coatings becomes homogeneous\",\"PeriodicalId\":18449,\"journal\":{\"name\":\"METAL 2020 Conference Proeedings\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"METAL 2020 Conference Proeedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"METAL 2020 Conference Proeedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser remelting of Ni-Cr-Re plasma spraying coating
The plasma spray technology allows spraying a wide variety of materials. Atmospheric plasma spraying (APS) consists in injecting a powder feedstock material in a plasma jet to melt and accelerate the injected particles and spray them onto a substrate. The coating growth is thus realized by the impingement and spreading of sprayed particles. This mechanism of coating formation induces the presence of pores and micro-cracks. In order to eliminate those drawbacks, laser remleting may be used to improve the properties and performances of plasma sprayed coatings. In the present paper, the Ni20%C + 20%Re coating fabricated by plasma spraying on stainless steel substrate were remelted by CO 2 laser, and the effect of laser remelting on microstructure and hardness of plasma sprayed Ni20%Cr + 20%Re coating were studied. The microstructure of plasma sprayed and laser remelted coatings were analyzed using scanning election microscopy (SEM) and energy disperse spectroscopy (EDS). The micro-hardness of coating was measured using micro-hardness tester. The results show that the laser remelted coating becomes much denser moreover, the chemical composition of the coatings becomes homogeneous