一类具有脉冲作用的非局部狄利克雷问题:解的增长估计

Pub Date : 2021-01-25 DOI:10.5802/CRMATH.109
J. C. Ferreira, M. Pereira
{"title":"一类具有脉冲作用的非局部狄利克雷问题:解的增长估计","authors":"J. C. Ferreira, M. Pereira","doi":"10.5802/CRMATH.109","DOIUrl":null,"url":null,"abstract":"Through this paper we deal with the asymptotic behaviour as t→ +∞ of the solutions for the nonlocal diffusion problem with impulsive actions and Dirichlet condition. We establish a decay rate for the solutions assuming appropriate hypotheses on the impulsive functions and the nonlinear reaction.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions\",\"authors\":\"J. C. Ferreira, M. Pereira\",\"doi\":\"10.5802/CRMATH.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through this paper we deal with the asymptotic behaviour as t→ +∞ of the solutions for the nonlocal diffusion problem with impulsive actions and Dirichlet condition. We establish a decay rate for the solutions assuming appropriate hypotheses on the impulsive functions and the nonlinear reaction.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类具有脉冲作用和狄利克雷条件的非局部扩散问题解在t→+∞时的渐近性质。在脉冲函数和非线性反应的适当假设下,建立了解的衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions
Through this paper we deal with the asymptotic behaviour as t→ +∞ of the solutions for the nonlocal diffusion problem with impulsive actions and Dirichlet condition. We establish a decay rate for the solutions assuming appropriate hypotheses on the impulsive functions and the nonlinear reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信