关于特殊符号图的注释

Z. Stanić
{"title":"关于特殊符号图的注释","authors":"Z. Stanić","doi":"10.26493/1855-3974.1933.2DF","DOIUrl":null,"url":null,"abstract":"A connected signed graph is called exceptional if it has a representation in the root system E 8 , but has not in any D k . In this study we obtain some properties of these signed graphs, mostly expressed in terms of those that are maximal with a fixed number of eigenvalues distinct from −2 . As an application, we characterize exceptional signed graphs with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such signed graphs.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"29 1","pages":"105-115"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Notes on exceptional signed graphs\",\"authors\":\"Z. Stanić\",\"doi\":\"10.26493/1855-3974.1933.2DF\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A connected signed graph is called exceptional if it has a representation in the root system E 8 , but has not in any D k . In this study we obtain some properties of these signed graphs, mostly expressed in terms of those that are maximal with a fixed number of eigenvalues distinct from −2 . As an application, we characterize exceptional signed graphs with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such signed graphs.\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"29 1\",\"pages\":\"105-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.1933.2DF\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.1933.2DF","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

如果一个连通的有符号图在根e8中有表示,但在任何dk中没有表示,则称为例外图。在这个研究中,我们得到了这些符号图的一些性质,主要是用那些具有固定数目的特征值不同于- 2的极大值来表示的。作为一个应用,我们刻画了恰好有2个特征值的例外符号图。在某些特殊情况下,我们证明了这种符号图的(不)存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on exceptional signed graphs
A connected signed graph is called exceptional if it has a representation in the root system E 8 , but has not in any D k . In this study we obtain some properties of these signed graphs, mostly expressed in terms of those that are maximal with a fixed number of eigenvalues distinct from −2 . As an application, we characterize exceptional signed graphs with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such signed graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信